The Tianbaoshan deposit, located in the southwestern part of the Yangtze Block, is a representative Pb–Zn deposit in the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province. The Pb–Zn orebodies are hosted in the upper Sinian Dengying Formation dolostone. The predominant minerals are sphalerite, galena, pyrite, chalcopyrite, quartz, and calcite with minor arsenopyrite,fahlore, and dolomite. The deposit is characterized by relatively strong Cu mineralization. However, the relationship between Pb–Zn and Cu mineralization is unknown. We analyzed the mineralogy and composition of fahlore, chalcopyrite, arsenopyrite, sphalerite, and galena using scanning electron microscopy–energy dispersive spectroscopy, with the aim of providing new evidence for the genesis of the Pb–Zn–(Cu) ore. The results show that the Cu ore in the deposit is dominated by chalcopyrite and fahlore, both of which formed before or during the Pb–Zn ore-forming stage. The fahlore showed dramatic compositional variation and was characterized by negative correlations between Ag and Cu, and between As and Sb,suggesting substitution of Ag for Cu, and that As and Sb substitute in the same site in the fahlore lattice. Based on backscattered electron images and composition, the fahlorewas divided into two types. Type I fahlore crystallized early and is characterized by enrichment of Cu and depletion in Ag and Sb. Type II fahlore formed after Type I, and is rich in Ag and poor in Cu and As. Moreover,galena and fahlore are the host minerals of Ag. The variation of valence state with As host mineral—from fahlore to arsenopyrite—indicates the metallogenic environment changed from relatively oxidizing to reducing with a high p H. In the light of Gibbs energies of reciprocal reactions and isotherms for cation exchange, the composition of the fahlore implies its ore-forming temperature was lower than220 °C, corresponding with typical Mississippi Valley-type(MVT) deposits. Based on the geologic character and geochemical data of this deposit,
Abstract The Fule Pb-Zn deposit is located in the Sichuan-Yunnan-Guizhou Province, and it is an important and giant low temperature metallogenic domain in China. In our research area, the Pb-Zn deposits are mainly hosted in the Permian Yangxin Formation and are composed of dolostone and limestone. The distance between the ore bodies and the Permian Emeishan basalt ranged from 50 to 160 m. In this study, the nickel rich minerals, including vaesite, polydymite and millerite, were reported for the first time in the Fule deposit. These minerals occurred as xenomorphic mineral aggregate and were sporadically distributed in the sphalerite-galena-calcite vein, which is the main ore type in the deposit. Our study indicated that the paragenetic sequence of minerals in the Fule deposit is the following order: polydymite → vaesite → mil- lerite → sphalerite → galena → tetrahedrite (tennantite). The geological occurrence characteristics of those nicke- liferous minerals suggested that the Permian Emeishan basalt is a possible barrier layer of Pb-Zn ore-forming fluid, and it is an important source for the Ni and part of the Cu in the deposit. The Sichuan-Yunnan-Guizhou Pb-Zn mineralization province is a world-class production base of Pb and Zn, in which the Permian Emeishan basalt and Pb- Zn deposits have uniformly spatial distribution, but the relationship of mineralization between them is still under debate. This report provides new evidence for understanding the relationship between Pb-Zn mineral- ization and Permian Emeishan basalt in the Sichuan- Yunnan-Guizhou Pb-Zn mineralization province.