Intramolecular ortho-C-H activation and C-N/C-O cyclizations of phenyl amidines and amides have recently been achieved under Cu catalysis. These reactions provide important examples of Cu-catalyzed functionalization of inert C-H bonds, but their mechanisms remain poorly understood. In the present study the several possible mechanisms including electrophilic aro- matic substitution, concerted metalation-deprotonation (CMD), Friedel-Crafts mechanism, radical mechanism, and proton- coupled electron transfer have been theoretically examined. Cu(II)-assisted CMD mechanism is found to be the most feasible for both C-O and C-N cyclizations. This mechanism includes three steps, i.e. CMD with Cu(II), oxidation of the Cu(II) inter- mediate, and reductive elimination from Cu(III). Our calculations show that Cu(II) mediates the C-H activation through an six-membered ring CMD transition state similar to that proposed for many Pd-catalyzed C-H activation reactions. It is also in- teresting to find that the rate-limiting steps are different for C-N and C-O cyclizations: for the former it is concerted metalation-deprotonation with Cu(II), whereas for the latter it is reductive elimination from Cu(III). The above conclusions are consistent with the experimental kinetic isotope effects (1.0 and 2.1 for C-O and C-N cyclizations, respectively), substituent effects, and the reactions under O2-free conditions.
An iron(Ⅲ)-catalyzed selective oxidation of 5-HMF to 2,5-DFF in air at room temperature was developed.This approach gives 2,5-DFF with good selectivity and yields. Additionally, a two-step process was developed for the oxidation of 2,5-DFF to 2,5-FDCA at remarkably high substrate concentrations. This work demonstrates unequivocally the great potential of iron as a cheap and earth-abundant catalyst for the development of new protocols for the conversion of biomass to value-added chemicals.
Chi FangJian-Jun DaiHua-Jian XuQing-Xiang GuoYao Fu