In order to construct p–n homojunction of Cu2O-based thin film solar cells that may increase its conversion efficiency, to synthesize n-type Cu2O with high conductivity is extremely crucial, and considered as a challenge in the near future. The doping effects of halogen on electronic structure of Cu2O have been investigated by density function theory calculations in the present work. Halogen dopants form donor levels below the bottom of conduction band through gaining or losing electrons, suggesting that halogen doping could make Cu2O have n-type conductivity. The lattice distortion, the impurity formation energy, the position, and the band width of donor level of Cu2O1 xHx(H = F, Cl, Br, I) increase with the halogen atomic number. Based on the calculated results, chlorine doping is an effective n-type dopant for Cu2O, owing to the lower impurity formation energy and suitable donor level.
3d transition metals doped CuGaS2 are considered as possible absorbing material candidates for intermediated band thin film solar cells. The electronic structure and optical properties of 3d transition metals doped CuGaS2 are investigated by using density functional theory calculations with the GGA + U method in the present work. The doping with 3d transition metals does not obviously change the crystal structure, band gap, and optical absorption edge of the CuGaS2 host. However, in the case of CuGa1-χTMχS2 (TM = Ti, V, Cr, Fe, and Ni), there is at least one distinct isolated impurity energy level in the band gap, and the optical absorption is enhanced in the ultraviolet-light region. Therefore, these materials are band thin film solar ceils. The calculated results are very well better explain them. ideal absorber material candidates for intermediated consistent with experimental observations, and could better explain them.
四元化合物半导体铜锌锡硫(Cu2Zn Sn S4,CZTS)由于其四种组成元素在地壳中丰度非常高且安全无毒,因而成本低廉。CZTS作为直接带隙半导体材料,其吸收光谱与太阳辐射光谱匹配性好、光吸收系数高,具有结构与性质可调可控、光电性能优异等优势,是发展绿色、低成本、高效率和稳定薄膜太阳电池的理想核心材料。近年来,国内外研究者对CZTS的结构与性质、制备工艺、应用尤其是通过结构、成分的调控提高其光电转换效率等方面进行了广泛的研究和探讨。本文对CZTS的结构演变、制备工艺、光电性质与应用等进行综述,重点分析了晶体结构、缺陷、表面与界面、合金化等因素对其光伏性能的影响。同时,对CZTS作为新型能量转换材料在光催化和热电等领域的应用进行了探讨。最后对CZTS目前存在的挑战和今后的研究重点进行总结并展望了将来可能的突破方向。