Dynamical behavior of a tumor-growth model with coupling between non-Gaussian and Gaussian noise terms is investigated. The departure from the Gaussian noise can not only reduce the probability of tumor cells in the active state, induce the minimum of the average tumor-cell population to move toward a smaller non-Gaussian noise, but also decrease the mean first-passage time. The increase of white-noise intensity can increase the tumor-cell population and shorten the mean first-passage time, while the coupling strength between noise terms has opposite effects, and the noise correlation time has a very small effect.