To develop a new technique for separating gas mixtures via hydrate formation,a set of medium-sized experimental bubble column reactor equipment was constructed.On the basis of the structure parameters of the ex- perimental bubble column reactor,assuming that the liquid phase was in the axial dispersion regime and the gas phase was in the plug flow regime,in the presence of hydrate promoter tetrahydrofuran(THF),the rate of hydrogen enrichment for CH4+H2 gas mixtures at different operational conditions(such as temperature,pressure,concentra- tion of gas components,gas flow rate,liquid flow rate)were simulated.The heat product of the hydrate reaction and its axial distribution under different operational conditions were also calculated.The results would be helpful not only to setting and optimizing operation conditions and design of multi-refrigeration equipment,but also to hydrate separation technique industrialization.
The changes of electrical resistance (R) were studied experimentally in the process of CH4 hydrate formation and decomposition, using temperature and pressure as the auxiliary detecting methods simultaneously. The experiment results show that R increases with hydrate formation and decreases with hydrate decompositon. R is more sensitive to hydrate formation and decompositon than temperature or pressure, which indicates that the detection of R will be an effective means for detecting natural gas hydrate (NGH) quantitatively.
In this work, a thermodynamic model is developed for prediction of structure H hydrate formation. The model combines the Peng-Robinson equation of state for the vapor, liquid and aqueous phases with the extended Ng-Robinson hydrate model for gas hydrate formation of all three structures. The parameters of 14 structure- H hydrate formers are determined based on the experimental data of structure-H hydrates in the literature. The expression of fugacity of water in the empty hydrate phase is correlated for calculating structure-H hydrate formation conditions in the absence of free water. The model is tested by predicting hydrate formation conditions of a number of structure-H hydrate forming systems which are in good agreement with the experimental data. The proposed model is also applied to the prediction of hydrate formation conditions for various reservoir fluids such as natural gas and gas condensate.
MA Qinglan(马庆兰)CHEN Guangjin(陈光进)GUO Tianmin(郭天民)ZHANG Kun(张坤)Julian Y. ZuoDan ZhangHeng-Joo Ng