The conventional charge transport models based on density- and field-dependent mobility, only having a non-Arrhenius tem- perature dependence, cannot give good current-voltage characteristics of poly (2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) hole-only devices. In this paper, we demonstrate that the current-voltage characteristics can give a good unified description of the temperature, carrier density mad electric field dependence of mobility based on both the Arrhenius temperature dependence and the non-Arrhenius temperature dependence. Fu^hermore, we perform a systematic study of charge transport and electrical properties for MEH-PPV. It is shown that the boundary carrier density has an important effect on the current-voltage characteristics. Too large or too small values of boundary carrier density will lead to incorrect cur- rent-voltage characteristics. The numerically calculated carrier density is a decreasing function of the distance to the interface, and the numerically calculated electric field is an increasing function of the distance. Both the maximum of carrier density and the minimum of electric field appear near the interface.
WANG LiGuoZHANG HuaiWuTANG XiaoLiLI YuanXunZHONG ZhiYong
NiFe/[IrMn/NiFe/IrMn] 5 /[NiFe/IrMn] 4 /NiFe structured exchange-biased multilayer films are designed and prepared by magnetron sputtering. The static and the microwave magnetic properties are systematically investigated. The results reveal that adding a partially pinned ferromagnetic layer can effectively broaden the ferromagnetic resonance linewidth toward the low frequency domain. Moreover, a wideband multi-peak permeability spectrum with a 3.1-GHz linewidth is obtained by overlapping the spectra of different partially pinned ferromagnetic layers and [antiferromagnet/ferromagnet/antiferromagnet] n stacks. Our results show that the linewidth of the sample can be feasibly tuned through controlling the proper exchange bias fields of different stacks. The designed multilayered thin films have potential application for a tunable wideband high frequency noise filter.
The microstructure and magnetic properties of cobalt ferrite thin films deposited by the sputtering method on an Fe3o4 un- der-layer were investigated at different post-annealing temperatures. Results show that the Fe3o4 under-layer can accelerate the grain growth of cobalt ferrite films due to the phase transformation of the Fe3o4 under-layer at about 400℃-500℃. By intro- ducing the Fe3O4 under-layer, cobalt ferrite nanocrystalline thin films with high coercivity can be obtained at lower post-annealing temperatures.
ZHONG ZhiYongZHANG HuaiWuTANG X iaoLiJING YuLanBAI FeiMingLIU Shuang