The most complicated component in cavitating flow and pressure distribution is the flow in the cavity closure line. The cavitating flow and pressure distribution provide critical aspects of flow field details in the region. The integral of pressure results of the hydrodynamic forces, indicate domination in the design of a supercavitating vehicle. An experiment was performed in a water tunnel to investigate the pressure characteristics of the cavity closure region. Ventilation methods were employed to generate artificial cavity, and the ventilation rate was adjusted accordingly to obtain the desired cavity length. An array of pressure transducers was laid down the cavity closure line to capture pressure distribution in this region. The experimental results show that there is a pressure peak in the cavity closure region, and the rise rate of pressure in space tends to be higher in the upwind side when the flow is non-axisymmetric. The transient pressure variations during the cavity formation procedure were also present. The method of measurement in this paper can be referenced by engineers. The result helps to study the flow pattern of cavity closure region, and it can also be used to analyze the formation of supercavitating vehicle hydrodynamics.
A combined method is proposed to determine the water entry acceleration at a low impact velocity through image processing. The procedure includes: (1) a sequence of images for water impact are recorded by a high speed camera, (2) the sub-pixel image processing method is employed to calculate the displacement with an accuracy on the "sub-pixel" level, (3) the acceleration of the object is acquired by differentiating the displacement twice and with results being further filtered by a carefully designed low-pass Butterworth filter. A theoretically based analysis is conducted for designing the parameters of the low-pass filters. It is shown that the water entry can be regarded as a procedure with a slowly changing velocity. The method is validated with the standard sinusoidal motion and the water entry of a sphere. This approach could be considered as an auxiliary method during the early-stage study of the water entry, and it could be further applied to some complicated circumstances, like the water entry of spinning spheres.