Poly(vinyl alcohol)/Hydroxylapatite(PVA/HA) composite hydrogel was prepared with poly(vinyl alcohol) and hydroxylapatite as raw materials, using the method of repeated freezing and thawing.The morphologies of PVA/HA composite hydrogel were observed by means of high-accuracy 3D profiler and scanning electron microscope(SEM).The compressive elastic modulus and the stress relaxation characteristics of PVA/HA composite hydrogel were measured using the flat-head cylinder indenter.The friction and wear tests between PVA/HA composite hydrogel and bovine knee articular cartilage were performed on the micro-tribometer.The worn morphologies of PVA/HA composite hydrogel were observed with environmental scanning electron microscope(ESEM).The results showed that PVA/HA composite hydrogel has the cross-link network microstructure which is similar to that of the natural bovine knee articular cartilages.With the increase of freezing-thawing cycles and the HA content, the degree of cross-link and the crystallization of PVA/HA composite hydrogel both increase, the elastic modulus increases evidently, the rate of stress relaxation is improved and the value of balance stress decreases.The friction coefficient decreases with the increase of the freezing-thawing cycles and the HA content.The more the freezing-thawing cycles are, the earlier the friction coefficient reaches the stable balance value.The friction deformation depth between PVA/HA composite hydrogel and bovine knee articular cartilage is inversely proportional to freezing-thawing cycles and the HA content.The main wear mechanisms of PVA/HA composite hydrogel are plastic flowing and adhesive flaking.The wear severity degree decreases with the increase of freezing-thawing cycles and the HA content.
Microporous titanium carbide coating was successfully synthesized on medical grade titanium alloy by using sequential carburization.Changes in the surface morphology of titanium alloy occasioned by sequential carburization were characterized and the wettability characteristics were quantified.Furthermore,the dispersion forces were calculated and discussed.The results indicate that sequential carburization is an effective way to modify the wettability of titanium alloy.After the carburization the surface dispersion force of titanium alloy increased from 76.5×10^(-3)J·m^(-2) to 105.5×10^(-3) J·m^(-2),with an enhancement of 37.9 %.Meanwhile the contact angle of titanium alloy decreased from 83° to 71.5°,indicating a significant improvement of wettability,which is much closer to the optimal water contact angle for cell adhesion of 70°.
Yong Luo~(1,2) Shi-rong Ge~1 Zhong-min Jin~21.Institute of Tribology and Reliability Engineering,School of Material Science and Engineering,China University of Mining and Technology,Xuzhou 221008,P.R China2.Institute of Medical and Biological Engineering,School of Mechanical Engineering,University of Leeds,Leeds LS2 9JT,UK