Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/porosity in fibers tows into consideration with unit cell which considers the 3D-4d braiding structure. Micro-optical photographs of composites have been taken to study the braided structure. Then a parameterized finite element model that reflects the structure of 3D-4d braided composites is proposed. Double-scale elastic modulus prediction model is developed to predict the elastic properties of 3D-4d braided C/SiC composites. Stiffness and eompliance-averaging method and energy method are adopted to predict the elastic properties of composites. Static-tension experiments have been conducted to investigate the elastic modulus of 3D-4d braided C/SiC composites. Finally, the effect of micro-porosity in fibers tows on the elastic modulus of 3D-4d braided C/SiC composites has been studied. According to the conclusion of this thesis, elastic modulus predicted by energy method and stiffness-averaging method both find good agreement with the experimental values, when taking the micro-porosity in fibers tows into consideration. Differences between the theoretical and experimental values become smaller.
A new unified macro- and micro-mechanics failure analysis method for composite structures was developed in order to take the effects of composite micro structure into consideration. In this method, the macro stress distribution of composite structure was calculated by commercial finite element analysis software. According to the macro stress distribution, the damage point was searched and the micro-stress distribution was calculated by reformulated finite-volume direct averaging micromechanics (FVDAM), which was a multi-scale finite element method for composite. The micro structure failure modes were estimated with the failure strength of constituents. A unidirectional composite plate with a circular hole in the center under two kinds of loads was analyzed with the traditional macro-mechanical failure analysis method and the unified macro- and micro-mechanics failure analysis method. The results obtained by the two methods are consistent, which show this new method's accuracy and efficiency.
In the analysis of functionally graded materials (FGMs), the uncoupled approach is used broadly, which is based on homogenized material property and ignores the effect Of local micro-structural interaction. The higher-order theory for FGMs (HOTFGM) is a coupled approach that explicitly takes the effect of micro-structural gradation and the local interaction of the spatially variable inclusion phase into account. Based on the HOTFGM, this article presents a quadrilateral element-based method for the calculation of multi-scale temperature field (QTF). In this method, the discrete cells are quadrilateral including rectangular while the surface-averaged quantities are the primary variables which replace the coefficients employed in the temperature function. In contrast with the HOTFGM, this method improves the efficiency, eliminates the restriction of being rectangular cells and expands the solution scale. The presented results illustrate the efficiency of the QTF and its advantages in analyzing FGMs.
Node interpolation cell method(NICM)is a micromechanics method employing the virtual displacement principle and the representative volume element(RVE)scheme to obtain the relationship between the global and the local strain.Mechanical properties of 2-D textile fabric reinforced ceramic matrix composites are predicted by NICM.Microstructures of 2-D woven and braided fabric reinforced composite are modeled by two kinds of RVE scheme.NICM is used to predict the macroscopic mechanical properties.The fill and warp yarns are simulated with cubic B-spline and their undulating forms are approximated by sinusoid.The effect of porosity on the fiber and matrix are considered as a reduction of elastic module.The connection of microstructure parameters and fiber volume fraction is modeled to investigate the reflection on the mechanical properties.The results predicted by NICM are compared with that by the finite element method(FEM).The comparison shows that NICM is a valid and feasible method for predicting the mechanics properties of 2-D woven and braided fabric reinforced ceramic matrix composites.