The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The well-known Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of “scanning line by line”,the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.
The state feedback design for singularly perturbed systems described in Delta operator is considered. The composite state feedback controller for slow and fast subsystems is designed by using the direct method. The obtained results can bring previous conclusions of continuous and discrete time systems into the unified Delta framework. A simulation example is presented to demonstrate the validity and efficiency of the design.
This paper discusses the problem of the H∞ filtering for discrete time 2-D singular Roesser models (2-D SRM). The purpose is to design an observer-based 2-D singular filter such that the error system is acceptable, jump modes free and stable, and satisfies a pre-specified H∞ performance level. By general Riccati inequality and bilinear matrix inequalities (BMI), a sufficient condition for the solvability of the observer-based H∞ filtering problem for 2-D SRM is given. A numerical example is provided to demonstrate the applicability of the proposed approach.