A visible rectification effect on the current-voltage curves of metal/porous silicon/p-silicon has been observed by current-sensing atomic force microscopy. The current-voltage curves of porous silicon membranes with different porosities, prepared through variation of etching current density for a constant time, indicate that a higher porosity results in a higher resistance and thus a lower rectification, until the current reaches a threshold at a porosity 〉55%. We propose that the conductance mode in the porous silicon membrane with porosities 〉55% is mainly a hopping mechanism between nano-crystallites and an inverse static electric field between the porous silicon and p-Si interface blocks the electron injection from porous silicon to p-Si, but with porosities ≤55%, electron flows through a direct continuous channel between nano-crystallites.
Bing XiaQiang MiaoJie ChaoShou Jun XiaoHai Tao WangZhong Dang Xiao
Titanium nitride (TIN) films with nanostructure were prepared at ambient temperature on a (111) silicon substrate by the filtered cathodic arc plasma (FCAP) technology with an in-plane "S" filter. The effects of deposition parameters on the grain size, texture and nano-hardness of the films were systematically investigated. The grain size was obtained through calculation using the Scherrer formula and observed by TEM. The results of X-ray diffraction and electron diffraction indicated that increasing either negative substrate bias or argon flow promoted the formation of (111) preferred orientation. High argon flow leads to biaxial texture. The micro-hardness of the TIN films as a function of grain size showed a behavior according to the Hall-Petch relation under high argon flow.
In this study two types of TIN films were prepared, one using the filtered cathodic arc plasma (FCAP) technique with an in-plane "S" triter, and the other using the multi-arc ion-plating (MAIP), and both deposited under the same parameters. Comparisons of the texture, hardness, roughness, tribological and electrochemical corrosion behaviors of the two types of TiN films were given. The TiN films obtained by the FCAP technology were found to be highly uniform, smooth and macroparticle-free. The TiN films deposited by FCAP had a (111) preferred orientation, while there was no texture in the films deposited by MAIP. Under low load the two kinds of TiN coatings had very different wear mechanisms; the films of FCAP had a lower wear rate and friction coefficient compared with the TiN films deposited by the MAIP technique. The dense and hole-free structure of TiN films of FCAP could effectively avoid the avalanche of TiN films from the substrate during corrosion tests.
Platinum nanoclusters were deposited along the supercoiled DNA strands after incubation of cis-(trans-1R,2R-diaminocyclohexane)(dl-camphorato)platinum(Ⅱ) (Cdp),an analogue of the anti-tumor drug-carboplatin,with DNA and K2PtCl4 for 600 min and then through reduction of dimethylaminoborane (DMAB). The decrease of absorption of DNA at 260 nm indicates the coordination of Cdp and DNA. TEM and AFM were employed to characterize the morphologies and structures of platinum nanoclusters.