The Ag-doped BaTiO3(BATO) polycrystalline powders were fabricated by Sol-Gel method. Further modification by rare earth La was done through gaseous penetration route. Changes in constitution,structure,and electrical conductivity before and after modification of Ag and La were characterized. The acceptor dopant Ag owned the ability to decrease the resistivity of the doping samples from 4.30×109 Ω·m to 6.14×105 Ω·m where the resistivity fell by 4 orders of magnitude when the Ag doping ratio was 0.10%. And more doping of Ag enhanced the resistivity dramatically even beyond 2.0×107 Ω·m. Yet,gaseous penetration of La successively reduced the resistivity of BATO to the lowest point of 2.45×105 Ω·m. XRD analysis indicated that the doping process of Ag did not change the perovskite structure and main phases of the powders. However,new compound BaLa2O4 generated from complex reactions during the penetration process,which manifested that La3+ penetrated into the crystal lattices in the form of substituting the Ti4+ site. And this substitution strengthened the Ti-O bond,which led to the inhibition of blue shift in FTIR spectrum caused by doping of Ag. The morphology of La penetrated BATO powders detected by SEM and EDAX suggested that La did penetrate into the powders and this penetration process progressed the partly sintering of the powders which is in favor of the conductivity.
A new kind of AZO powders were synthesized by co-precipitation method with the doping content of Al was 3.0 wt%. Further modification of La to the powders was done via a gaseous penetration processing. Changes in constitution,structure,and electrical conductivity caused by doping and penetration were characterized. The doping of Al lowered the resistivity of AZO powders from over 1×1014(ZnO made domestically) to 4.24×107 Ω·cm. But more effective modification via gaseous penetration processing decreased the resistivity of La penetrated AZO powders to the lowest point of 2.45×105 Ω·cm. The optimal penetration conditions coordinated by orthogonal test were that La3+ content of the penetration solvent was 2.0 wt.%,and that the penetration processing lasted for 5 h at the temperature of 480 oC. XRD analysis demonstrated that the doping process of Al only leaded to the changes of the peak width and intensity without new phases appearing. Yet,new phases appeared after the processing of gaseous penetration of La,which indicated that La enter the AZO powders thus complex reactions occurred to form the extra compounds. EDAX analysis,coupling with XRD,provided the evidence that La did exist in the penetrated AZO powders and the potential sign of the generation of extra compounds. Through SEM images,it was illustrated that the gaseous penetration processing progressed the growth of grain size in the shape of rod and generated distinguishable phases of extra compounds.
La2O3 and Ce2O3 were penetrated into PbTiO3 to obtain conductive powders, and then they were mixed with polyurethane and butyl acetate to prepare conductive coatings. The results showed that the electric property of modified PbTiO3 powders was improved by penetration of La2O3 and Ce2O3. XRD patterns showed that some new compounds such as La2Ti6O15, CeTi21O38 and Pb0.634La0.209Ti0.948O2.284 were formed, which led to the rapid increase of conductivity. The resistivity of modified PbTiO3 powders decreased to 3.88 Ω·m. The coatings using modified PbTiO3 powders as fillings also had a good conductivity. When the PbTiO3 powders were 10% and antisettle agent (bentonite) content was 0.50%, and mass ratio between polyurethane and butyl acetate was 1.05, the surface resistivity of the coatings fell down to 1.3×108 Ω·m. This kind of conductive coatings could be used in electromagnetic shielding.