您的位置: 专家智库 > 资助详情>国家重点基础研究发展计划(2011CB504405)

国家重点基础研究发展计划(2011CB504405)

作品数:2 被引量:9H指数:2
相关作者:陈雅静刘建荣杨国源更多>>
相关机构:上海交通大学医学院附属瑞金医院上海交通大学更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:自动化与计算机技术医药卫生更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 1篇自动化与计算...
  • 1篇医药卫生

主题

  • 1篇神经活动
  • 1篇神经网
  • 1篇神经网络
  • 1篇神经系
  • 1篇神经系统
  • 1篇侵入性
  • 1篇中枢神经
  • 1篇中枢神经系统
  • 1篇外泌体
  • 1篇回归神经网络
  • 1篇基因
  • 1篇基因治疗
  • 1篇疾病
  • 1篇疾病诊治
  • 1篇轨迹预测
  • 1篇INVASI...
  • 1篇MIRNA
  • 1篇MONKEY

机构

  • 1篇上海交通大学
  • 1篇上海交通大学...

作者

  • 1篇杨国源
  • 1篇刘建荣
  • 1篇陈雅静

传媒

  • 1篇Scienc...
  • 1篇上海交通大学...

年份

  • 1篇2015
  • 1篇2012
2 条 记 录,以下是 1-2
排序方式:
外泌体在中枢神经系统疾病诊治中的研究进展被引量:4
2015年
外泌体是细胞内的多囊泡体与细胞质膜融合后主动分泌到细胞外的一种大小在30~100 nm的小囊泡。外泌体内含有脂质、蛋白质、miRNA等活性物质,可通过与靶细胞受体结合或水平转移内含物发挥生物学功能。外泌体作为一种新型的细胞间交流方式,在中枢神经系统参与形成神经元—胶质信号网络。脑细胞及干细胞分泌的外泌体在中枢神经系统疾病的发病及损伤修复机制中起着重要的调控作用。大量研究显示外泌体不仅可作为生物学标志物,同时具有良好的治疗潜能。本文着重阐述外泌体的一般特性、功能及其在中枢神经系统疾病诊治中的研究进展。
陈雅静刘建荣杨国源
关键词:外泌体中枢神经系统MIRNA基因治疗
Development of an invasive brain machine interface with a monkey model被引量:5
2012年
Brain-machine interfaces (BMIs) translate neural activities of the brain into specific instructions that can be carried out by external devices. BMIs have the potential to restore or augment motor functions of paralyzed patients suffering from spinal cord damage. The neural activities have been used to predict the 2D or 3D movement trajectory of monkey's arm or hand in many studies. However, there are few studies on decoding the wrist movement from neural activities in center-out paradigm. The present study developed an invasive BMI system with a monkey model using a 10×10-microelectrode array in the primary motor cortex. The monkey was trained to perform a two-dimensional forelimb wrist movement paradigm where neural activities and movement signals were simultaneous recorded. Results showed that neuronal firing rates highly correlated with forelimb wrist movement; > 70% (105/149) neurons exhibited specific firing changes during movement and > 36% (54/149) neurons were used to discriminate directional pairs. The neuronal firing rates were also used to predict the wrist moving directions and continuous trajectories of the forelimb wrist. The four directions could be classified with 96% accuracy using a support vector machine, and the correlation coefficients of trajectory prediction using a general regression neural network were above 0.8 for both horizontal and vertical directions. Results showed that this BMI system could predict monkey wrist movements in high accuracy through the use of neuronal firing information.
ZHANG QiaoShengZHANG ShaoMinHAO YaoYaoZHANG HuaiJianZHU JunMingZHAO TingZHANG JianMinWANG YiWenZHENG XiaoXiangCHEN WeiDong
关键词:侵入性神经活动轨迹预测回归神经网络
共1页<1>
聚类工具0