In this paper, we obtain functional limit theorems for d-dimensional FBM in HSlder norm via estimating large deviation probabilities for d-dimensional FBM in HSlder norm.
A class of N-parameter Gaussian processes are introduced, which are more general than the N-parameter Wiener process. The definition of the set generated by exceptional oscillations of a class of these processes is given, and then the Hausdorff dimension of this set is defined. The Hausdorff dimensions of these processes are studied and an exact representative for them is given, which is similar to that for the two-parameter Wiener process by Zacharie (2001). Moreover, the time set considered is a hyperrectangle which is more general than a hyper-scluare used by Zacharie (2001). For this more general case, a Fernique-type inequality is established and then using this inequality and the Slepian lemma, a Levy's continuity modulus theorem is shown. Independence of increments is required for showing the representative of the Hausdorff dimension by Zacharie (2001). This property is absent for the processes introduced here, so we have to find a different way.
We introduce a super-Lévy process and study maximal speed of all particles in the range and the support of the super-Lévy process. The state of historical super-Lévy process is a measure on the set of paths. We study the maximal speed of all particles during a given time period, which turns out to be a function of the packing dimension of the time period. We calculate the Hausdorff dimension of the set of a-fast paths in the support and the range of the historical super-Lévy process.
We study the moduli of continuity of a class of N-parameter Gaussian processes and get some results on'the packing dimension of the set of their fast points.
Let {X, X1, X2,...} be a strictly stationaryφ-mixing sequence which satisfies EX = 0,EX^2(log2{X})^2〈∞and φ(n)=O(1/log n)^Tfor some T〉2.Let Sn=∑k=1^nXk and an=O(√n/(log2n)^γ for some γ〉1/2.We prove that limε→√2√ε^2-2∑n=3^∞1/nP(|Sn|≥ε√ESn^2log2n+an)=√2.The results of Gut and Spataru (2000) are special cases of ours.
In this paper, we introduce a class of Gaussian processes Y={Y(t):t∈R^N},the so called hifractional Brownian motion with the indcxes H=(H1,…,HN)and α. We consider the (N, d, H, α) Gaussian random field x(t) = (x1 (t),..., xd(t)),where X1 (t),…, Xd(t) are independent copies of Y(t), At first we show the existence and join continuity of the local times of X = {X(t), t ∈ R+^N}, then we consider the HSlder conditions for the local times.