Three kinds of single layer coatings of Zn,Zn15Al,316L stainless steel and two kinds of double layer coatings with inner layer of Zn or Zn15Al and outer layer of 316L stainless steel by arc spraying were developed to protect the metal ends of prestressed high-strength concrete(PHC)pipe piles against soil corrosion.The corrosion behaviors of the coated Q235 steel samples in the simulated Dagang soil solution were investigated by potentiodynamic polarization,electrochemical impedance spectroscopy(EIS) and natural immersion tests.The results show that the corrosion of the matrix Q235 steel is effectively inhibited by Zn,Zn15Al, Zn+316L and Zn15Al+316L coatings.The corrosion rate value of Zn15Al coated samples is negative.The corrosion products on Zn and Zn15Al coated samples are compact and firm.The corrosion resistance indexes of both Zn and Zn15Al coated samples are improved significantly with corrosion time,and the latter are more outstanding than the former.But the corrosion resistance of 316L coated samples is decreased quickly with the increase in immersion time.When the coatings are sealed with epoxy resin,the corrosion resistance of the coatings will be enhanced significantly.
Arc sprayed Zn and Zn15Al coatings were chosen to protect the metal ends of prestressed high-strength concrete (PHC) pipe piles against corrosion of salina soil in northern china and neutral meadow soil in northeast China. The corrosion behavior of the coated Q235 steel samples in two simulated soil solutions were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The experimental results show that the corrosion of the matrix Q235 steel in both simulated solutions is remarkably inhibited by Zn and Zn15Al coatings. The corrosion products on Zn and Zn15Al are thick, compact, firm and protective. The corrosion current density icorr of both Zn and Zn15Al-coated samples is decreased evidently with corrosion time, and the charge transfer resistance Rct is increased greatly. The corrosion resistance indexes of Zn and Zn15Al in simulated neutral meadow soil solution are more outstanding than those in salina soil. The corrosion resistance of Zn15Al in salina soil is slightly superior to that of Zn. When the sprayed coatings are sealed with epoxy resin, the corrosion resistance of the coatings is further enhanced markedly.