采用第一性原理分子动力学(Ab Initio Molecular Dynamics,AIMD)方法研究了Al和Zr液固转变过程中的能量、偶关联函数、结构因子和键对分布的变化规律,获得了不同温度下两种金属液体的扩散系数和黏度.结果表明,AIMD计算得到的液态金属偶关联函数、结构因子和扩散系数与实验测量数据符合得很好.在冷速为5.0×1013和2.5×1013K/s时,液态Al分别在730K附近发生玻璃化转变或者形成有一定缺陷的fcc晶体结构.在平均冷却速率为4.3×1013和2.0×1014K/s的条件下,液态Zr在1200K时分别开始转变为热力学上亚稳定的bcc结构和玻璃相.Zr的液态和玻璃态结构中二十面体和bcc类型短程序是其主要拓扑短程序.
A series of Er-Al-Co bulk metallic glasses (BMGs) have been prepared by the copper mold casting method. The glass forming ability and magnetocaloric effect (MCE) for these alloys have been investigated. The second-order magnetic transition from para-magnetic to ferromagnetic states takes place at about 9 K. These BMGs exhibit excellent MCE because of their large effective magneton number; Er56Al24Co20 BMG has a maximum entropy change and refrigeration capacity of 16.06 J kg-1 K-1 and 546 J kg-1,respectively,under the field of 50 kOe (10 kOe=795.775 kA/m) indicating that these BMGs are potential candidate magnetic materials for hydrogen liquefaction.
HUI XiDong XU ZhiYi WU Yuan CHEN XiaoHua LIU XiongJun LU ZhaoPing
Refractory high-entropy alloys present attractive mechanical properties,i.e.,high yield strength and fracture toughness,making them potential candidates for structural applications.Understandings of atomic and electronic interactions are important to reveal the origins for the formation of high-entropy alloys and their structure−dominated mechanical properties,thus enabling the development of a predictive approach for rapidly designing advanced materials.Here,we report the atomic and electronic basis for the valence−electron-concentration-categorized principles and the observed serration behavior in high-entropy alloys and highentropy metallic glass,including MoNbTaW,MoNbVW,MoTaVW,HfNbTiZr,and Vitreloy-1 MG(Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5)).We find that the yield strengths of high-entropy alloys and high-entropy metallic glass are a power-law function of the electron-work function,which is dominated by local atomic arrangements.Further,a reliance on the bonding-charge density provides a groundbreaking insight into the nature of loosely bonded spots in materials.The presence of strongly bonded clusters and weakly bonded glue atoms imply a serrated deformation of high-entropy alloys,resulting in intermittent avalanches of defects movement.
William Yi WangShun Li ShangYi WangFengbo HanKristopher A.DarlingYidong WuXie XieOleg N.SenkovJinshan LiXi Dong HuiKarin A.DahmenPeter K.LiawLaszlo J.KecskesZi-Kui Liu