To merge the beam from either of the two injectors to the main linac, a dog-leg system will be employed in the second Medium Energy Beam Transport (MEBT2) line of the China ADS driving accelerator. The achromatic condition has to be guaranteed to avoid beam center excursion against energy jitter. RF cavities were found to be indispensable to control the bunch length growth in the dog-leg system of MEBT2. The full uncoupling between transverse and longitudinal plane is desired to minimize the growth of projected rms emittances. The uncoupled achromatic condition of this dogleg system with the presence of RF bunching cavities will be deduced using the transfer matrices method. It is found that, to fulfill the uncoupling condition, the distance between the bunching cavities is uniquely determined by the maximum energy gain of the RF cavities. The theoretical analysis is verified by the simulation code TraceWin. The space charge effect on the uncoupled achromatic condition and the beam emittance growth will Mso be discussed.
In beam halo experiments, it is very important to correctly characterize the RFQ output proton beam. In order to simulate the beam dynamics properly, we must first know the correct initial beam parameters. We have used two different methods, quadrupole scans and multi-wire scanners to determine the transverse phase-space properties of the proton beam. The experimental data were analyzed by fitting to the 3-D nonlinear simulation code IMPACT. For the quadrupole scan method, we found that the RMS beam radius and the measured beam-core profiles agreed very well with the simulations. For the multi-wire scanner method, we choose the case of a matched beam. By fitting the IMPACT simulation results to the measured data, we obtained the Courant-Snyder parameters and the emittance of the beam. The difference between the two methods is about eight percent, which is acceptable in our experiments.
Now that the CSNS ion source test stand has been stably working for years, an online control system for the CSNS ion source which aims to be more stable and reliable is now under development. F3RP61-2L, a new PLC CPU module running an embedded Linux system, is introduced to the system as an IOC, to function together with the I/O modules of FA-M3 PLC on the PLC-bus. The adoption of the new IOC not only simplifies the architecture of the control system, but also improves the data transmission speed. In this paper, the design and development of the supervisory and control system for the CSNS ion source are described.
Space-charge forces acting in mismatched beams have been identified as a major cause of beam halo. In this paper,we describe the beam halo experimental results in a FODO beam line at IHEP. With this beam transport line, experiments are carried out to compare the measured data with the multi-particle simulations and to study the formation of a beam halo. The maximum measured amplitudes of the matched and mismatched beam profiles agree well with simulations. Details of the experiment are presented.
The period length is usually much larger than the cavity effective length in a low energy superconducting linac.The long drifts between cavities will not only decrease the acceptance of the linac, but also lead to possible instability. The linac will be more sensitive to mismatch and other perturbations. From the longitudinal motion equation, the function which describes the parametric resonance is deduced and the relation between the instability region and the cavity filling factor is discussed. It indicates that if the zero current phase advance per period is kept below 90°, instability driven by parametric resonance will never occur. The space charge effect will enhance the instability, so that a stricter limitation on the phase advance per cell is required. From the numerical simulation results for two different schemes of Injector-Ⅰ of the C-ADS driver linac, one can find that even with just three cells in the unstable region, significant emittance growth can be observed. Further investigations show that it is apt to produce halo particles under resonance, and the machine becomes more sensitive to errors and mismatches. Therefore, it is important to keep all cells in the stable region throughout the linac of very high beam power to minimize beam losses.
Stabilization of the accelerating field in Drift Tube Linac(DTL) is obtained by inserting Post Couplers(PCs). On the basis of the equivalent circuit model for the DTL with and without asymmetrical PCs, stabilization is deduced quantitatively: we let δω/ω0 be the relative frequency error, then we discover that the sensitivity of field to perturbation is proportional to √δω/ω0 without PCs and to δω/ω0 with PCs. Then we adapt the circuit model of symmetrical PCs for the case of asymmetrical PCs. The circuit model shows how the slope of field distribution is changed by rotating the asymmetrical PCs and illustrates that the asymmetrical PCs have the same effect as the symmetrical ones in stabilization.
In a long-term planning for neutrino experiments in China, a medium baseline neutrino beam is proposed which uses a continue wave(CW) superconducting linac of 15 MW in beam power as the proton driver. The linac will be based on the technologies which are under development by the China-ADS project, namely it is also composed of a3.2 Me V normal conducting RFQ and five different types of superconducting cavities. However, the design philosophy is quite different from the China-ADS linac because of the much weaker requirement on reliability here. The nominal design energy and current are 1.5 Ge V and 10 m A, respectively. The general considerations and preliminary results on the physics design will be presented here. In addition, the alternative designs such as 2.0 Ge V and 2.5 Ge V, which may be required by the general design, can be easily extended from the nominal one.