Currently,ocean data portals are being developed around the world based on Geographic Information Systems(GIS) as a source of ocean data and information.However,given the relatively high temporal frequency and the intrinsic spatial nature of ocean data and information,no current GIS software is adequate to deal effectively and efficiently with spatiotemporal data.Furthermore,while existing ocean data portals are generally designed to meet the basic needs of a broad range of users,they are sometimes very complicated for general audiences,especially for those without training in GIS.In this paper,a new technical architecture for an ocean data integration and service system is put forward that consists of four layers:the operation layer,the extract,transform,and load(ETL) layer,the data warehouse layer,and the presentation layer.The integration technology based on the XML,ontology,and spatiotemporal data organization scheme for the data warehouse layer is then discussed.In addition,the ocean observing data service technology realized in the presentation layer is also discussed in detail,including the development of the web portal and ocean data sharing platform.The application on the Taiwan Strait shows that the technology studied in this paper can facilitate sharing,access,and use of ocean observation data.The paper is based on an ongoing research project for the development of an ocean observing information system for the Taiwan Strait that will facilitate the prevention of ocean disasters.
提出"全域—局部"遥感信息分布提取模型,通过计算和整合影像局部范围内的空间和光谱特征来优化全域上光谱混淆较大像元的提取精度。模型分为两个主要计算步骤:"全域"前分类与"局部"后分类;"全域"前分类将仅划分出满足一定精度阈值标准的像元,而"局部"后分类则在此部分分类结果基础上,进一步发掘和计算已分类像元所蕴含的信息来辅助对全域未分类像元的提取。在不透水面专题提取过程中,采用支持向量机SVM作为前分类器,通过控制精度阈值所对应的分类后验概率产生部分分类结果;采用调节最小距离分类器作为后分类器,根据一定的权重整合像元局部范围内的空间与光谱信息,代替了传统的全域光谱信息来优化分类。实验采用TM5影像以及所对应的NLCD(National Land Cover Data)标准不透水面产品作为测试集,"全域-局部"模型对应单一SVM模型的提取精度由80.31%提高为82.73%,局部后分类器精度较单一SVM模型由54.27%提高到59.94%。实验证明该模型具有较明显的精度提升且能够较好地解决不透水面与裸土混淆的问题,并得到空间形态上更为完善的不透水面提取结果。
应用遥感技术进行精细地物信息提取是研究生态系统结构、过程和功能的重要手段之一。由于热带地区生态系统复杂,为精细地物信息提取带来很大的不确定性,极易产生"同物异谱"、"同谱异物"的现象。研究以地处热带地区的海南岛精细地物遥感信息提取为例,在综合分析典型地物光谱特征、空间分布、斑块形状等基础上,构建和优化了水陆指数WLI(Water andLand differing Index)、乔灌草指数GSI(Grass and Shrub differing Index)、旱地-沙地指数SSI(Field and Sand differing Index),并结合新型通用植被指数VIUPD(Vegetation Index of the Universal Pattern Decomposition Method)及DEM(Digital Elevation Model)等多源数据,提出基于决策树的面向对象遥感信息提取方法。该方法首先确定要提取的对象,明确对象类别与对象隶属关系,然后逐层逐项的提取天然林、橡胶林、浆纸林等地物信息。结果表明,综合提取的精度达88%,相比传统的监督分类方法精度(66%)提高22个百分点,精度明显提高。