Solar sail is used to achieve a geocentric sun-synchronous frozen orbit.This kind of orbit combines the characteristics of both sun-synchronous orbits and frozen orbits.Furthermore,the impossible orbits for a typical spacecraft such as sun-synchronous orbits whose inclination is less than 90° are also possible for solar sail.To achieve a sun-synchronous frozen orbit,the characteristic acceleration of the sail is chosen properly.In addition,the attitude of the sail is adjusted to keep the sun-synchronous and frozen characteristics.The perturbations including atmosphere drag,third-body gravitational forces and shaded regions are discussed,where the atmosphere drag is cancelled by solar radiation pressure force,third-body gravitational forces have negligible effects on the orbit and the shaded region can be avoided by choosing the classical orbit elements of the sail.At last,a numerical example is employed to validate the sun-synchronous frozen characteristics of the sail.
In this paper, two formation controllers are developed under directed and undirected communication topology for six-degree-of-freedom (6-DOF) networked spacecraft flying in deep space. In the control algorithm, any explicit leader does not exist in the formation team and the proposed controller is required that each spacecraft communicates with its neighbors only, which avoids having to communicate each spacecraft's trajectory and therefore reduces the required communication loads of the whole formation. The proposed control strategy allows that each spacecraft can track its desired position and attitude and simultaneously the whole group moves to the desired formation and obtains its desired relative attitudes between spaceerafts. Simulation results demonstrate the effectiveness of the proposed controller.
A solar collector system is a possible method using solar energy to deflect Earth-threatening near-Earth objects.We investigate the dynamics and control of a solar collector system including a main collector (MC) and secondary collector (SC).The MC is used to collect the sunlight to its focal point,where the SC is placed and directs the collected light to an asteroid.Both the relative position and attitude of the two collectors should be accurately controlled to achieve the desired optical path.First,the dynamical equation of the relative motion of the two collectors in the vicinity of the asteroid is modeled.Secondly,the nonlinear sliding-mode method is employed to design a control law to achieve the desired configuration of the two collectors.Finally,the deflection capability of this solar collector system is compared with those of the gravitational tractor and solar sail gravitational tractor.The results show that the solar collector is much more efficient with respect to deflection capability.
Shen-Ping Gong,Jun-Feng Li and Yun-Feng Gao School of Aerospace,Tsinghua University,Beijing 100084,China