Background Familial hypercholesterolemia (FH) is an autosomal dominant disorder of lipoprotein metabolism which can lead to premature coronary heart disease (pCHD). There are about 3.8 million potential FH patients in China, whereas the clinical and genetic data of FH are limited. Methods Dutch Lipid Clinic Network (DLCN) criteria was used to diagnose FH in outpatients with hypercholesterolemia. Resequencing chip analysis combined with Sanger sequencing validation were used to identify mutations in the definite FH patients according to DLCN criteria. In silico analysis was conducted in mutations with previously unknown pathogenicity. Then, the novel mutant receptors were transfected into human embryo kidney 293 (HEK-293) cells. The binding and the internalization activities of the mu- tant receptors were analyzed by flow cytometry. Results The prevalence of definite FH in outpatients with hypercholesterolemia in this study is 3.2%. Using genetic testing, one homozygous FH (HoFH), one heterozygous FH (HeFH) and three compound heterozygous FH patients were confirmed. Eight mutations in low-density lipoprotein receptor (LDLR) gene were identified, in which c.357delG was a novel mutation and co-segregated with the FH phenotype. Bioinformatic analysis confirmed that c.357delG was a pathogenic mutation. Furthermore, when compared with the wild-type LDLRs by flow eytometry analysis, the binding and internalization activities of c.357delG mutant LDLRs were reduced by 35% and 49%, respectively. Conclusions This study identified eight LDLR gene mutations in five patients with definite FH, in which c.357delG is a novel pathogenic mutation. These findings increase our understanding of the genetic spectrum of FH in China.
Xu WANGLong JIANGLi-Yuan SUNYue WUWen-Hui WENXi-Fu WANGWei LIUYu-Jie ZHOULu-Ya WANG
Background Familial hypercholesterolemia (FH), caused by low density lipoprotein (LDL) receptor (LDL-R) gene mutations, is associated with increased risk of premature coronary heart disease. Until now, limited molecular data concerning FH are available in China. The present study described the clinical profiles and cell biological defects of a Chinese FH kindred with novel LDL-R gene mutation. Methods The patient's LDL-R gene coding region was sequenced. The patient's lymphocytes were isolated and the LDL-R expression, binding and up-take functions were observed by immunohistochemistry staining and flow cytometry detection. The patient's heart and the major large vessels were detected by vessel ultrasound examination and myocardial perfusion imaging (MPI). Results The patient's LDL-R expression, LDL binding and up-take functions were significantly lower than normal control (39%, 63% and 76% respectively). A novel homozygous 1439 C→T mutation of the LDL-R gene was detected in the patient and his family. ECG showed atypical angina pectoris. Echocardiogram showed stenosis of the coronary artery and calcification of the aortic valve and its root. Blood vessel ultrasound examination showed the thickness of large vessel intima, and the vessel lumen was narrowed by 71%. MPI showed ischemic changes. Conclusions The LDL-R synthesis dysfunction of FH patients leads to arterial stenosis and calcification, which are the major phenotype of the clinical disorder. The mutation of the LDL-R gene is determined. These data increase the mutational spectrum of FH in China.