您的位置: 专家智库 > >

国家教育部博士点基金(202088025)

作品数:1 被引量:4H指数:1
相关作者:王执铨陆锦军更多>>
相关机构:南京理工大学更多>>
发文基金:国家教育部博士点基金江苏省自然科学基金国家自然科学基金更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 1篇中文期刊文章

领域

  • 1篇自动化与计算...

主题

  • 1篇PHASE_...
  • 1篇BASED_...
  • 1篇INTERN...

机构

  • 1篇南京理工大学

作者

  • 1篇陆锦军
  • 1篇王执铨

传媒

  • 1篇Transa...

年份

  • 1篇2006
1 条 记 录,以下是 1-1
排序方式:
INTERNET TRAFFIC DATA FLOW FORECAST BY RBF NEURAL NETWORK BASED ON PHASE SPACE RECONSTRUCTION被引量:4
2006年
Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a network flow. Some parameters, such as the correlative dimension and the Lyapunov exponent are calculated, and the chaos characteristic is proved to exist in Internet traffic data flows. A neural network model is construct- ed based on radial basis function (RBF) to forecast actual Internet traffic data flow. Simulation results show that, compared with other forecasts of the forward-feedback neural network, the forecast of the RBF neural network based on the chaos theory has faster learning capacity and higher forecasting accuracy.
陆锦军王执铨
共1页<1>
聚类工具0