To improve the separation efficiency of photoinduced charge carries,Au@SiO2nanoparticles(NPs)with core–shell structure were loaded onto the surface of TiO2nanorods grown on fluorine-doped tin oxide substrate by a facile two-step process.The resulted Au@SiO2/TiO2photoanodes were characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,as well as photoelectrochemical measurements.Compared with pristine TiO2nanorod film,the Au@SiO2/TiO2films showed remarkable enhancement in photoelectrochemical water splitting,with incident photonto-current conversion efficiency increasing from 31%to37%at 380 nm at 0.7 V versus saturated calomel electrode.This could be interpreted by the effect of metallic surface plasmon resonance of Au@SiO2NPs,which would generate an intense electromagnetic field with spatially nonhomogenous distributed intensity.As a result,the charge carriers generated in the near-surface region of TiO2nanorods could be easily separated.This modification method based on the effect of metallic surface plasmon resonance for promoted charge carrier separation provides a promising way to develop semiconductor photoelectrodes with high solar water-splitting performance.