本文讨论在金融中有重要应用价值的,由Lévy过程驱动的倒向双重随机微分方程: Y_t=ξ+∫_t^T f(s,Y_(s-),U_s,Z_s)ds+∫_t^T g(s,Y_(s-),U_s,Z_s)dB_s -∫_t^TU_sdW_s-sum for i=1 to ∞ Z_s^(i)dH_s^(i)在系数g满足Lipschitz条件,f满足推广的Bihari条件:|f(t,y_1,u_1,z_1)-f(t,y_2,u_2,z_2)|~2≤c(t)k(|y_1-y_2|~2)+K(|u_1-u_2|~2+||z_1-z_2||~2)时,利用推广It公式、Picard迭代法和区间延拓过程,证明了上述方程F_t适应解的存在唯一性,推广了其它文献以前的结论.