In the bearings-only target tracking, wireless sensor network (WSN) collects observations of the target direction at various nodes and uses an adaptive filter to combine them for target tracking. An efficient network management is necessary to gain an optimal tradeoffbetween locating accuracy and energy consumption. This article proposes a self-organizing target tracking algorithm to select the most beneficial subset of nodes to track the target at every snapshot. Compared with traditional methods, this scheme avoids the need for keeping global position information of the network as in greedy selection. Each node judges its future usefulness depending on the knowledge of its own position and using simple mathematics computation. Simulations indicate that this scheme has locating accuracy comparable to the global greedy algorithm. Also, it has good robustness against node failure and autonomous adaptability to the change of the network scale. Furthermore, this algorithm consumes limited energy because only a portion of nodes partakes in the selection at every snapshot.