In economic order quantity models without backordering, both the stock cost of each unit quantity and the order cost of each cycle are characterized as independent fuzzy variables rather than fuzzy numbers as in previous studies. Based on an expected value criterion or a credibility criterion, a fuzzy expected value model and a fuzzy dependent chance programming (DCP) model are constructed. The purpose of the fuzzy expected value model is to find the optimal order quantity such that the fuzzy expected value of the total cost is minimal. The fuzzy DCP model is used to find the optimal order quantity for maximizing the credibility of an event such that the total cost in the planning periods does not exceed a certain budget level. Fuzzy simulations are designed to calculate the expected value of the fuzzy objective function and the credibility of each fuzzy event. A particle swarm optimization (PSO) algorithm based on a fuzzy simulation is designed, by integrating the fuzzy simulation and the PSO algorithm. Finally, a numerical example is given to illustrate the feasibility and validity of the proposed algorithm.
This paper characterizes quality, budget, and demand as fuzzy variables in a fuzzy vendor selection expected value model and a fuzzy vendor selection chance-constrained programming model, to maximize the total quality level. The two models have distinct advantages over existing methods for selecting vendors in fuzzy environments. A genetic algorithm based on fuzzy simulations is designed to solve these two models. Numerical examples show the effectiveness of the algorithm.