We have performed first principles calculations of Fe-doped BaTiO3 and SrTiO3. Dopant formation energy, structure distortion, band structure and density of states have been computed. The dopant formation energy is found to be 6.8eV and 6.5eV for Fe-doped BaTiO3 and SrTiO3 respectively. The distances between Fe impurity and its nearest O atoms and between Fe atom and Ba or Sr atoms are smaller than those of the corresponding undoped bulk systems. The Fe defect energy band is obtained, which mainly originates from Fe 3d electrons. The band gap is still an indirect one after Fe doping for both BaTiO3 and SrWiO3, but the gap changes from Γ-R point to Γ-X point.
In this paper, the structure of cubic CaTiO3 (001) surfaces with CaO and TiO2 terminations has been studied from density functional calculations. It has been found that the Ca atom has the largest relaxation for both kinds of terminations, and the rumpling of the CaO-terminated surface is much larger than that of TiO2-terminated surface. Also we have found that the metal atom relaxes much more prominently than the O atom does in each layer. The CaO-terminated surface is slightly more energetically favourahle than the TiO2-terminated surface from the analysis of the calculated surface energy.
Electronic properties of the (001) surface of cubic BaZrO3 with BaO and ZrO2 terminations have been studied using first-principles calculations. Surface structure, partial density of states, band structure and surface energy have been obtained. We find that the largest relaxation appears in the first layer of atoms, and the relaxation of the BaO-terminated surface is larger than that of the ZrO2-terminated surface. The surface rumpling of the BaO-terminated surface is also larger than that of the ZrO2-terminated surface. Results of surface energy calculations reveal that the BaZrO3 surface is likely to be more stable than the PbZrO3 surface.