Purpose: To determine whether the topical application of keratinocyte growth factor-2 (KGF-2) can enhance corneal epithelial healing in rabbit alkali burned cornea. In addition, the distribution and proliferation of corneal epithelial stem cells in KGF-2-treated and control corneas were investigated to explain their mechanisms of effects on the epithelium. Methods: Twenty-four New Zealand eyes were divided into four groups, treated with KGF-2 solution (1, 50, 100 μg/ml) and PBS solution. Eighth millimeter filter paper discs, produced by standard paper punch, were soaked for 15 sec in 0.5N NaOH solution. The alkali-soaked discs were applied to the central cornea, centered on the pupil and held gently in position with forceps for 1 min. The cornea was finally irrigated over 1 min with 100 ml balanced salt solution (BSS). Keratinocyte growth factor-2 was then applied topically three times a day. The phosphate-buffered saline (PBS) group was served as a control. Each corneal epithelial defect was subsequently photographed every 24 hours with a slit lamp and was measured by computer-assisted digitizer. In each group, two rabbits were sacrificed for light microscopic examination after the interval of 7, 14 and 21 days. Meanwhile, the cornea epithelium was examined by immunohistochemistry for P63, AE5, EGFR. Results: Topical application of 10 μg/ml to 100 μg/ml KGF-2 significantly accelerated corneal epithelial wound healing when compared with controls. After 24 hours, epithelial healing rate of the 100 μg/ml KGF-2 group and the PBS treated group was (74±6)% and (40±8)% (P < 0.05). After 48 hours, the rate of the C group was (94±6)%, whereas in the control group it was (73±12)% (P < 0.05). Epithelial defects were often recurrent, which happened only two times in the 100 μg/ml KGF-2-treated group, but many times in the control group. In the corneal epithelial stem cell analysis, the number of the P63 positive cells was higher in the KGF-2-treated corneal epithelium than in the controls. The P63 positive cells in
Lin LiuYongping LiShuqi HuangJianxian LinWenxin Zhang
AIM:To investigate auto-cortex of crystalline lens induced iris neovascularization (INV). METHODS: Thirty-six eyes of 36 guinea-pigs were included and divided into three groups randomly in this cohort study. Group A: the right lens nucleus was extracted and the remaining cortical lens material was aspirated thoroughly.. Group B: the lens was removed and 30 mu L precipitated lens cortex was injected into the anterior chamber again. Group C: aspirated the lens cortex of the left eyes and inject them into the right anterior chambers about 10 mu L. Clinical changes were followed by slit-lamp examination and photograph. The eye balls were enucleated at the day of 2, 4, 7, 11, 13, 17 after operation. HE was used to detect the pathological changes. ' RESULTS:Group A:INV had not been observed until the end of empirical study. The stromal layer contained thick wall vessels, without expansion. Group B: All eyes developed INV. Postoperative (po) 7 days; the eyes developed intense and extensive INV. The vessels of iris expanded remarkably and neovascularization was observed erupting from it's lateral wall and stretching towards the anterior surface. Poll days, INV regressed gradually after lens cortex had been absorbed. Group C: Po four (4) days, new blood vessels liking red line were presented on the anterior surface of the iris and they were not obvious. CONCLUSION: Anterior chamber inside lens coriaceous can induce iris new blood vessels.