A discrete total variation calculus with variable time steps is presented for mechanico-electrical systems where there exist non-potential and dissipative forces. By using this discrete variation calculus, the symplectic-energy-first integrators for mechanico-electrical systems are derived. To do this, the time step adaptation is employed. The discrete variational principle and the Euler-Lagrange equation are derived for the systems. By using this discrete algorithm it is shown that mechanico-electrical systems are not symplectic and their energies are not conserved unless they are Lagrange mechanico-electrical systems. A practical example is presented to illustrate these results.
We investigate Noether symmetries and conservation laws of the discrete mechanico-electrical systems with nonregular lattices.The operators of discrete transformation and discrete differentiation to the right and left are introduced for the systems.Based on the invariance of discrete Hamilton action on nonregular lattices of the systems with the dissipation forces under the infinitesimal transformations with respect to the time,generalized coordinates and generalized charge quantities,we work out the discrete analog of the generalized variational formula.From this formula we derive the discrete analog of generalized Noether-type identity,and then we present the generalized quasi-extremal equations and properties of these equations for the systems.We also obtain the discrete analog of Noether-type conserved laws and the discrete analog of generalized Noether theorems for the systems.Finally we use an example to illustrate these results.
FU JingLi1,CHEN LiQun2 & CHEN BenYong3 1 Institute of Mathematical Physics,Zhejiang Sci-Tech University,Hangzhou 310018,China
This paper presents a method to find Noether-type conserved quantities and Lie point symmetries for discrete mechanico-electrical dynamical systems,which leave invuriant the set of solutions of the corresponding difference scheme. This approach makes it possible to devise techniques for solving the Lagrange Maxwell equations in differences which correspond to mechanico-electrical systems,by adapting existing differential equations.In particular,it obtains a new systematic method to determine both the one-parameter Lie groups and the discrete Noether conserved quantities of Lie point symmetries for mechanico-electrical systems.As an application,it obtains the Lie point symmetries and the conserved quantities for the difference equation of a model that represents a capacitor microphone.
DNA is a nucleic acid molecule with double-helical structures that are special symmetrical structures attracting great attention of numerous researchers. The super-long elastic slender rod, an important structural model of DNA and other long-train molecules, is a useful tool in analysing the symmetrical properties and the stabilities of DNA. This paper studies the structural properties of a super-long elastic slender rod as a structural model of DNA by using Kirchhoff's analogue technique and presents the Noether symmetries of the model by using the method of infinitesimal transformation. Baaed on Kirchhoff's analogue it analyses the generalized Hamilton canonical equations. The infinitesimal transfornaationa with rcspect to the radial coordinnte, the gonarnlizod coordinates, and the Cluasi-momenta of 5he model are introduced. The Noether gymmetries and conserved qugntities of the model are obtained.
The Lie symmetries and conserved quantities of a two-dimensional nonlinear diffusion equation ot concentration are considered. Based on the invariance of the two-dimensional nonlinear diffusion equation of concentration under the infinitesimal transformation with respect to the generalized coordinates and time, the determining equations of Lie symmetries are presented. The Lie groups of transformation and infinitesimal generators of this equation are obtained. The conserved quantities associated with the nonlinear diffusion equation of concentration are derived by integrating the characteristic equations. Also, the solutions of the two-dimensional nonlinear diffusion equation of concentration can be obtained.
This paper focuses on studying Noether symmetries and conservation laws of the discrete mechanico-electricM systems with the nonconservative and the dissipative forces. Based on the invariance of discrete Hamilton action of the systems under the infinitesimal transformation with respect to the generalized coordinates, the generalized electrical quantities and time, it presents the discrete analogue of variational principle, the discrete analogue of Lagrange-Maxwell equations, the discrete analogue of Noether theorems for Lagrange Maxwell and Lagrange mechanico-electrical systems. Also, the discrete Noether operator identity and the discrete Noether-type conservation laws are obtained for these systems. An actual example is given to illustrate these results.