With the development of deepwater oil and gas exploration, Steel Catenary Risers(SCRs) become preferred risers for resource production, import and export. Vortex induced vibration(VIV) is the key problem encountered in the design of SCRs. In this study, a new model, the rigid swing model, is proposed based on the consideration of large curvature of SCRs. The sag bend of SCRs is assumed as a rigid swing system around the axis from the hanging point to the touch down point(TDP) in the model. The torque, produced by the lift force and the swing vector, provides the driving torque for the swing system, and the weight of SCRs provides the restoring torque. The simulated response of rigid swing is coupled with bending vibration, and then the coupling VIV model of SCRs is studied in consideration of bending vibration and rigid motion. The calculated results indicate that the rigid swing has a magnitude equal to that of bending vibration, and the rigid motion affects the dynamic response of SCRs and can not be neglected in the VIV analysis.
With the exploitation of oil and gas in deep water, the traditional vortex induced vibration (VIV) theory is challenged by the unprecedented flexibility of risers. A nonlinear time-dependent VIV model is developed in this paper based on a VIV lift force model and the Morison equation. Both the inline vibration induced by the flow due to vortex shedding and the fluid-structure interaction in the transverse direction are included in the model. One of the characteristics of the model is the response-dependent lift force with nonlinear damping, which is different from other VIV models. The calculations show that the model can well describe the VIV of deepwater risers with the results agreeing with those calculated by other models.