基于球形与轴对称形变的相对论平均场(Relativistic Mean Field,简称RMF)理论模型,分别计算了Zr同位素链的基态总能量,并根据其差值提取了形变修正能后发现,Zr同位素链丰中子区的核具有大的长椭形变,对应的形变修正能可达到10MeV。利用RMF理论计算的基态能量,在扣除液滴模型计算的结合能后,得到了Zr同位素链的壳修正能。通过对壳修正能的分析后发现,形变使N=50壳效应显著减弱。特别是在丰中子区,大形变导致了N=50壳结构的消失。
The polarization effect on the spin symmetry for anti-Lambda spectrum in 16 O+Λ system has been studied in relativistic mean-field theory.The PK1 effective interaction is used for nucleon-meson couplings and G-parity symmetry with a reduction factor ξ = 0.3 is adopted for anti-Lambda-meson couplings.The energy differences between spin doublets in the anti-Lambda spectrum are around 0.10-0.73 MeV for p Λ state.The dominant components of the Dirac spinor for the anti-Lambda spin doublets are found to be near identical.It indicates that the spin symmetry is still well-conserved against the polarization effect from the valence antiLambda hyperon,which leads to a highly compressed cold nucleus with the central density up to 2 - 3 times of saturated density.
The shell evolution at N = 20, a disappearing neutron magic number observed experimentally in very neutron-rich nuclides, is investigated in the constrained relativistic mean field (RMF) theory. The trend of the shell closure observed experimentally towards the neutron drip-line can be reproduced. The predicted two-neutron separation energies, neutron shell gap energies and deformation parameters of ground states are shown as well. These results are compared with the recent Hartree-Fock-Bogliubov (HFB-14) model and the available experimental data. The perspective towards a better understanding of the shell evolution is discussed.
The configuration-fixed deformation constrained relativistic mean field approach with time-odd component has been applied to investigate the ground state properties of 33Mg with effective interaction PK1.The ground state of 33Mg has been found to be prolate deformed,β2=0.23,with the odd neutron in 1/2[330] orbital and the energy -251.85 MeV which is close to the data -252.06 MeV.The magnetic moment -0.9134 μN is obtained with the effective electromagnetic current which well reproduces the data -0.7456 μN self-consistently without introducing any parameter.The energy splittings of time reversal conjugate states,the neutron current,the energy contribution from the nuclear magnetic potential,and the effect of core polarization are discussed in detail.
LI Jian1,ZHANG Ying1,YAO JiangMing1 & MENG Jie1,2 1 School of Physics,State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871,China
The g factors and spectroscopic quadrupole moments of low-lying excited states 2+1,…,81+ in 24Mg are studied in a covariant density functional theory.The wave functions are constructed by configuration mixing of axially deformed mean-field states projected on good angular momentum.The mean-field states are obtained from the constraint relativistic point-coupling model plus BCS calculations using the PC-F1 parametrization for the particle-hole channel and a density-independent delta-force for the particle-particle channel.The available experimental g factor and spectroscopic quadrupole moment of 21+ state are reproduced quite well.The angular momentum dependence of g factors and spectroscopic quadrupole moments,as well as the effects of pairing correlations are investigated.
Using the single particle states and the residual interaction derived from the relativistic point-coupling model with the PC-F1 parameter set,the second-order core polarization corrections to nuclear magnetic moments of LS closed shell nuclei ±1 nucleon with A = 15,17,39 and 41 are studied and compared with previous non-relativistic results.It is found that the second-order corrections are significant.With these corrections,the isovector magnetic moments of the concerned nuclei are well reproduced,especially those for A = 17 and A = 41.
The rapid transition between spherical and γ-soft shapes in Zn isotopes in the mass A 70 region,is analyzed using excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom,with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes.The microscopic potential energy surfaces,together with the characteristic collective observables,illustrate a rapid transition from near spherical shape at the N = 40 subshell,to γ-soft deformed shapes for lighter isotopes.The calculated spectra display fingerprints of a second-order shape phase transition that can be approximately described by the E(5) analytic solution.
Efforts have been made to solve the Dirac equation with axially deformed scalar and vector WoodsSaxon potentials in the coordinate space with the imaginary time step method. The results of the singleparticle energies thus obtained are consistent with those calculated with the basis expansion method, which demonstrates the feasibility of the imaginary time step method for the relativistic static problems.
The potential energy surfaces of even-even 142-156Ba are investigated in the constrained reflectionasymmetric relativistic mean-field approach with parameter set PK1. It is shown that for the ground states, 142Ba is near spherical,156Ba well quadrupole-deformed, and in between 144-154Ba octupole deformed. In particular, the nuclei 148,150Ba with N=92, 94 have the largest octupole deformations. By including the octupole degree of freedom, energy gaps N = 88, N = 94 and Z = 56 near Fermi surfaces for the singleparticle levels in 148Ba with β2 ~ 0.26 and β3 ~ 0.17 are found. Furthermore, the performance of the octupole deformation driving pairs (ν2f7/2, ν1i13/2) and (π2d5/2, π1h11/2) is demonstrated by analyzing the singleparticle levels near Fermi surfaces in 148Ba.