In order to confirm the segregation characteristic of phosphorus in an Fe-17Cr alloy at grain boundary, the phosphorus segregation was obtained by Auger electron spectroscopy. The results show that a maximum phosphorus segregation appeared at 450 ℃ for all specimens aged for 30 rain at 350, 400, 450, 500, and 600 ℃ after being solution-treated at 1 000 ℃ for 1 h. These results were analyzed by the characteristics of segregation peak temperature of non-equilibrium segregation.
In virtue of Auger electron spectroscopy, the grain boundary concentrations of phosphorus in Ni-Cr-Fe superalloy are measured after solution treatment at 1 180 ℃ for 45 min. The results show that a peak of phosphorus concentration occurs at about 180 min during isothermal ageing at 500 ℃, and a maximum concentration of phosphorus appears also at about 500 ℃ for all specimens aged for 20 min at temperatures of 200, 400, 500, 700 and 800 ℃. The results are analyzed with the laws of nonequilibrium grain boundary segregation. It is found from the analysis that peaks are related to critical time for nonequilibrium grain boundary segregation of phosphorus.
The data obtained by bending tests for intergranular embrittlement after 45 h and 450 h exposure to Strauss solution have been reported for 304 stainless steel. The results show that an embrittlement peak appears at 650℃ for all samples quenched from 1260℃ and then sensitized for 150 h at 480, 565, 650, 730, 815 and 900℃ respectively. The temperature corresponding to the embrittlement peak is decreased to 565℃ when the sensitizing time is prolonged to 1 500 h. In this paper, these data are analyzed with an isothermal kinetic model of nonequilibrium grain boundary segregation, indicating that the embrittlement peak is related to the critical time for nonequilibrium grain boundary segregation of sulfur.