您的位置: 专家智库 > >

江西省教育厅科学技术研究项目(200655)

作品数:1 被引量:3H指数:1
相关作者:陆本魁刘福窑伍歆更多>>
相关机构:中国科学院国家天文台南昌大学更多>>
发文基金:国家自然科学基金江西省教育厅科学技术研究项目更多>>
相关领域:天文地球更多>>

文献类型

  • 1篇中文期刊文章

领域

  • 1篇天文地球

主题

  • 1篇天体
  • 1篇天体力学
  • 1篇辛方法
  • 1篇辛算法

机构

  • 1篇南昌大学
  • 1篇中国科学院国...

作者

  • 1篇伍歆
  • 1篇刘福窑
  • 1篇陆本魁

传媒

  • 1篇天文学报

年份

  • 1篇2006
1 条 记 录,以下是 1-1
排序方式:
几类辛方法的数值稳定性研究被引量:3
2006年
主要对一阶隐式Euler辛方法M1、二阶隐式Euler中点辛方法M2、一阶显辛Euler方法M3和二阶leapfrog显辛积分器M4共4种辛方法及一些组合算法进行了通常意义下的线性稳定性分析.针对线性哈密顿系统,理论上找到每个数值方法的稳定区,然后用数值方法检验其正确性.对于哈密顿函数为实对称二次型的情况,为了理论推导便利,特推荐采用相似变换将二次型的矩阵对角化来研究辛方法的线性稳定性.当哈密顿分解为一个主要部分和一个小摄动次要部分且二者皆可积时,无论是线性系统还是非线性系统,这种主次分解与哈密顿具有动势能分解相比,明显扩大了辛方法的稳定步长范围.
刘福窑伍歆陆本魁
关键词:天体力学
共1页<1>
聚类工具0