The majority of topology optimization of compliant mechanisms uses linear finite element models to find the structure responses.Because the displacements of compliant mechanisms are intrinsically large,the topological design can not provide quantitatively accurate result.Thus,topological design of these mechanisms considering geometrical nonlinearities is essential.A new methodology for geometrical nonlinear topology optimization of compliant mechanisms under displacement loading is presented.Frame elements are chosen to represent the design domain because they are capable of capturing the bending modes.Geometrically nonlinear structural response is obtained by using the co-rotational total Lagrange finite element formulation,and the equilibrium is solved by using the incremental scheme combined with Newton-Raphson iteration.The multi-objective function is developed by the minimum strain energy and maximum geometric advantage to design the mechanism which meets both stiffness and flexibility requirements, respectively.The adjoint method and the direct differentiation method are applied to obtain the sensitivities of the objective functions. The method of moving asymptotes(MMA) is employed as optimizer.The numerical example is simulated to show that the optimal mechanism based on geometrically nonlinear formulation not only has more flexibility and stiffness than that based on linear formulation,but also has better stress distribution than the one.It is necessary to design compliant mechanisms using geometrically nonlinear topology optimization.Compared with linear formulation,the formulation for geometrically nonlinear topology optimization of compliant mechanisms can give the compliant mechanism that has better mechanical performance.A new method is provided for topological design of large displacement compliant mechanisms.
Based on the level set model and the reliability theory, a numerical approach of reliability-based topology optimization for compliant mechanisms with multiple inputs and outputs is presented. A multi-objective topology optimal model of compliant mechanisms considering uncertainties of the loads, material properties, and member geometries is developed. The reliability analysis and topology optimization are integrated in the optimal iterative process. The reliabilities of the compliant mechanisms are evaluated by using the first order reliability method. Meanwhile, the problem of structural topology optimization is solved by the level set method which is flexible in handling complex topological changes and concise in describing the boundary shape of the mechanism. Numerical examples show the importance of considering the stochastic nature of the compliant mechanisms in the topology optimization process.