In clinical practice,examination of the hemorrhagic spot (HS) remains difficult.In this paper,we describe a remote controlled capsule (RCC) micro-system with an automated,color-based sensor to identify and localize the HS of the gastrointestinal (GI) tract.In vitro testing of the detecting sensor demonstrated that it was capable of discriminating mimetic intestinal fluid (MIF) with and without the hemoglobin (Hb) when the concentration of Hb in MIF was above 0.05 g/ml.Therefore,this RCC system is able to detect the relatively accurate location of the HS in the GI tract.
A system is described here that can noninvasively control the navigation of freely behaving rat via ultrasonic,epidermaland LED photic stimulators on the back.The system receives commands from a remote host computer to deliver specifiedelectrical stimulations to the hearing,pain and visual senses of the rat respectively.The results demonstrate that the three stimuliwork in groups for the rat navigation.We can control the rat to proceed and make right and left turns with great efficiency.Thisexperiment verified that the rat was able to reach a setting destination in the way of cable with the help of a person through theappropriate coordination of the three stimulators.The telemetry video camera mounted on the head of the rat also achieveddistant image acquisition and helped to adjust its navigation path over a distance of 300 m.In a word,the non-invasive motioncontrol navigation system is a good,stable and reliable bio-robot.
Xitian Pi~(1,2),Shuangshuang Li~1,Lin Xu~1,Hongying Liu~1,Shenshan Zhou~1,Kang Wei~1,Zhenyu Wang~1,Ziru Jia,Xiaolin Zheng~(1,2),Zhiyu Wen~2 1.Bioengineering College,Chongqing University,Chongqing 400030,P.R.China 2.Key Laboratories for National Defense Science and Technology of Innovative Micro-Nano Devices and System Technology,Chongqing University,Chongqing 400030,P.R.China