The meta-instable state(MIS)is the final stage before fault instability during stick-slip movement.Thus,identification of MIS is of great significance for assessing earthquake hazard in fault zones.A rock sample with a precut planar fault was loaded on a horizontally biaxial servo-controlled press machine to create stick-slip conditions.Digital images of the sample surface were taken by a high-speed camera at a rate of 1000 frames per second during the stick-slip motion and processed using a 2D digital image correlation method to obtain the displacement field.We define a synergism coefficient that describes the relative dispersion of the accumulative fault slip.The results reveal that:(1)a local pre-slip area spreads very slowly along the fault before the MIS develops.It extends at a higher but still slow speed during meta-instable state I(MIS-I).During the final^1.5%of MIS,in meta-instable state II(MIS-II),the local pre-slip area first extends at a speed of^0.9 m/s,and then expands out of the observed image area at a very high speed.These results indicate that the local pre-slip area transforms from a state of quasi-static extension in MIS-I to quasi-dynamic extension in MIS-II.(2)The synergism coefficient of the fault slip decreases to half of its original value in MIS-I and to a quarter of its original value in MIS-II.This continuous decrease of synergism coefficient indicates that the strengthening of fault slip synergism is a characteristic of MIS.(3)Furthermore,the unstable sliding stage includes three sliding processes:initial-,fast-,and adjusted-sliding.There are two pauses between the three sliding processes.
Identification of the meta-instable stress state and study of its mechanism and evolution of relevant physical fields would be of great significance for determination of potential seismic risks and estimation of critical times. In laboratory experiments, that the specimen enters the meta-instable is marked by accelerated stress release. Could we use the experimental result to identify the earthquake in natural conditions? Because the observational data from one station can only reflect the stress state beneath this station, the key problem for identification of the meta-instability is how to recognize regional stress state through observational data from many stations. In this work, we choose the evolution of the temperature field over varied deformation stages during a stick-slip event on a 5 bending fault as an example, and attempt to find the response features of the physical quantity when the fault enters the meta-instable state. We discuss the characteristics of stages for the stress build-up, stress-time process deviating from linearity before instability, meta-instability, instability, and post-instability, respectively. The result shows that the fault instability slide is a conversion process from independent activities of each fault segment to synergism activity. The instability implies completion of the synergism. The stage deviating from linearity is the onset of stress release, and it is also the onset of the synergism. At the meta-instability stages, stress release becomes dominant, while the synergism tends to finish. Therefore, the analysis of the regional overall stress state should not start from individual stations, and instead it should begin with the evolution of the whole deformation field.