提出并实现了一种基于广播星历和区域参考网的实时精密单点定位的新算法——NAPPP(network augmented precise point positioning)。采用可实时获取的广播星历,将用户站与附近的若干参考站一起联合处理,实时估计用户站位置参数以及导航卫星轨道和钟差改正数。实验结果表明,NAPPP算法静、动态实时定位精度分别为1~2cm和2~6cm,其定位精度和收敛速度明显优于基于IGS最终轨道和30s钟差的PPP定位结果,与基于CODE最终轨道和5s钟差的PPP定位结果相当。
Sea level variations(SLVs) can be divided into two major components:the steric SLV and the mass-induced SLV.These two components of SLV in the South China Sea(SCS) are studied by using satellite altimetry,GRACE(Gravity Recovery and Climate Experiment) satellite gravity,and oceanographic data on annual and inter-annual timescales.On the annual timescale,the geographic distribution of mass-induced SLV's amplitude jointly estimated from altimetry and the ECCO(Estimation of the Circulation and Climate of the Ocean) model agrees very well with that from GRACE.GRACE observes obvious seasonal mass-induced SLV in the SCS with annual amplitude of 2.7±0.4 cm,which is consistent with the annual amplitude of 2.7±0.3 cm estimated from the steric-corrected altimetry.On the inter-annual timescales,the mean SLV in the SCS shows a large oscillation,which is mainly caused by the steric effect.The trend of mean SLV inferred from altimetry in the SCS is 5.5±0.7 mm/yr for the period of 1993-2009,which is significantly higher than the global sea level rise rate of 3.3±0.4 mm/yr in the same period.There is no obvious trend signal in the mass-induced SLV detected from GRACE that indicates the water exchange between the SCS and its adjacent seas and land is in balance within the study period.
FENG Wei 1,2,ZHONG Min 1,3 & XU HouZe 1,3 1 State Key Laboratory of Geodesy and Earth’s Dynamics,Institute of Geodesy and Geophysics,Chinese Academy of Sciences,Wuhan 430077,China
本文利用GRACE(Gravity Recovery and Climate Experiment)卫星重力资料研究了亚马逊流域2002—2010年的陆地水变化,并与水文模式和降雨资料进行了比较分析.在年际尺度上,GRACE结果表明:2002—2003年和2005年,亚马逊流域发生明显的干旱现象;2007年至2009年,陆地水呈逐年增加的趋势,并在2009年6月变化值达到最大,为772±181km3;自2009年6月至2010年12月,陆地水总量又急剧减少了1139±262km3,这相当于全球海平面上升3.2±0.7mm所需的水量.水文模式得到的亚马逊流域陆地水在2010年也表现出明显的减少.降雨资料与GRACE观测资料有很好的一致性.在2005年和2010年的干旱期,亚马逊流域的降雨显著减少,说明降雨是亚马逊流域陆地水变化的重要因素.此外,本文采用的尺度因子的方法有效地降低了GRACE后处理误差的影响.
Tropospheric delay is one of the main sources of measurement error in global navigation satellite systems.It is usually compensated by using an empirical correction model.In this paper,temporal and spatial variations of the global zenith tropospheric delay(ZTD) are further analyzed by ZTD time series from global International GNSS Service stations and annual ZTDs derived from global National Centers for Environmental Prediction reanalysis data,respectively.A new ZTD correction model,named IGGtrop,is developed based on the characteristics of ZTD.Experimental results show that this new 3D-grid-based model that accommodates longitudinal as well as latitudinal variations of ZTD performs better than latitude-only based models(such as UNB3,EGNOS,and UNB3m).The global average bias and RMS for IGGtrop are about-0.8 cm and 4.0 cm,respectively.Bias values for UNB3,EGNOS,and UNB3m are 2.0,2.0,and 0.7 cm,respectively,and respective RMS values 5.4,5.4,and 5.0 cm.IGGtrop shows much more consistent prediction errors for different areas than EGNOS and UNB3m,In China,the performance of IGGtrop(bias values from-2.0 to 0.4 cm and RMS from 2.1 to 6.4 cm) is clearly superior to those of EGNOS and UNB3m.It is also demonstrated that IGGtrop biases vary little with height,and its RMS values tend to decrease with increasing height.In addition,IGGtrop generally estimates ZTD with greater accuracy than EGNOS and UNB3m in the Southern Hemisphere.
The parameters, i.e. the Period and the Quality factor, of the Earth's free core nutation (FCN) are closely related to the dissipative coupling between the core and the mantle. Based on the FCN parameters obtained from the actual observations and theoretical simulation, significantly constrained in this study were several key parameters near the core-mantle boundary (CMB), related to the core and mantle coupling, including viscosity at the top of liquid core, conductivity at the bottom of the mantle, and dynamic ellipticity of the CMB. In order to choose high quality observations from global stations of the superconducting gravimeters (SG) on the Global Geodynamics Project (GGP) network, we adopted two criteria, the standard deviations of harmonic analysis on tidal observations and the quality of the FCN parameters calculated with the observations from single station. After the mean ocean tidal effects of the recent ocean tidal models were removed, the FCN parameters were retrieved by stacking the tidal gravity observations from the GGP network. The results were in a good agreement with those in the recent research by using the SG and/or the VLBI observations. Combined with an FCN theoretical model deduced by angular momentum method, the viscous and electromagnetic coupling parameters near the CMB were evaluated. Numerical results indicated that the viscosity at the top of the liquid core was in the range from 6.6×102 to 2.6×103 Pa·s, which was in good agreement with those obtained from the Earth's nutation, the FCN and variations in the length of day (LOD). The conductivity at the bottom of the mantle should be as large as 2.6×106-1.0×107 S m-1 to match the FCN quality factors from the actual observations. The dissipative coupling had a little influence of 1-2 sidereal days for the FCN period.