In this paper, a Ni-W-La2O3 composite coating was prepared by the electrodeposition method. Microhardness tester and environmental scanning electron microscope equipped energy dispersive spectroscopy were employed to investigate the microhardness and the surface morphology of the composite coatings respectively, and the high temperature friction behavior and corrosion resistance of the coatings against molten glass were investigated by using a high temperature tribometer. The results show that La2O3 can refine the microstructure effectively, and make the element distribution uniform, which leads to the increase of average microhardness. La2O3 particulates can reduce the friction coefficient between the composite coating and glass during the sliding process at about 973 K largely, and the corrosion resistance of the La2O3 added Ni-W coatings is effectively improved compared with that of the non-added one, furthermore the mechanism of friction-reducing and anti-corrosion is also discussed.
A novel supersonic plasma spraying was used to prepare rare earth oxides doped CoCrW coatings. X-ray diffractometer, contact surface profiler, hardness tester, micro-friction and -wear tester and en- vironmental scanning electron microscope equipped with energy dispersive X-ray spectroscopy were employed to investigate the phase structure, surface morphology, microhardness, friction and wear properties of the sprayed coatings. The results show that rare earth oxide doped coatings have high microhardness and excellent tribological properties. Furthermore, the friction and wear mechanisms of sprayed coatings are also discussed.