This paper deals with the delay-dependent stability of numerical methods for delay differential equations. First, a stability criterion of Runge-Kutta methods is extended to the case of general linear methods. Then, linear multistep methods are considered and a class of r(0)-stable methods are found. Later, some examples of r(0)-stable multistep multistage methods are given. Finally, numerical experiments are presented to confirm the theoretical results.
We prove existence and uniqueness of the global solution to the Cauchy problem on a universe fireworks model with finite total mass at the initial state when the ratio of the mass surviving the explosion, the probability of the explosion of fragments and the probability function of the velocity change of a surviving particle satisfy the corresponding physical conditions. Although the nonrelativistic Boltzmann-like equation modeling the universe fireworks is mathematically easy, this article leads rather theoretically to an understanding of how to construct contractive mappings in a Banach space for the proof of the existence and uniqueness of the solution by means of methods taken from the famous work by DiPerna & Lions about the Boltzmann equation. We also show both the regularity and the time-asymptotic behavior of solution to the Cauchy problem.
Three algorithms based on the bifurcation method are applied to solving the D4 symmetric positive solutions to the boundary value problem of Henon equation. Taking r in Henon equation as a bi- furcation parameter, the D4-Σd(D4-Σ1, D4-Σ2) symmetry-breaking bifurcation points on the branch of the D4 symmetric positive solutions are found via the extended systems. Finally, Σd(Σ1, Σ2) sym- metric positive solutions are computed by the branch switching method based on the Liapunov-Schmidt reduction.