We consider three random variables X_n, Y_n and Z_n, which represent the numbers of the nodes with 0, 1, and 2 children, in the binary search trees of size n. The expectation and variance of the three above random variables are got, and it is also shown that X_n, Y_n and Z_n are all asymptotically normal as n→∞by applying the contraction method.
Let {X(t), t ≥ 0} be a Lévy process with EX(1) = 0 and EX^2(1) 〈 ∞. In this paper, we shall give two precise asymptotic theorems for {X(t), t 〉 0}. By the way, we prove the corresponding conclusions for strictly stable processes and a general precise asymptotic proposition for sums of i.i.d. random variables.
The authors consider the limiting behavior of various branches in a uniform recursive tree with size growing to infinity. The limiting distribution of ξn,m, the number of branches with size m in a uniform recursive tree of order n, converges weakly to a Poisson distribution with parameter 1/m with convergence of all moments. The size of any large branch tends to infinity almost surely.