In this paper,three kinds of water-soluble fullerene derivatives were synthesized via electrophilic addition reaction and cycloaddition reaction,respectively.The chemical composition characterizations of these derivatives indicated the successful preparation of C60(OH)x,C60(C(COOH)2)x and C60(OH)x(NHCH2COOH)y fullerene derivatives.The aggregation and morphology characterizations showed that the three kinds of derivatives had an ideal spherical aggregating structures and excellent dispersibility in water,especially C60(OH)x and C60(C(COOH)2) x.The lubrication performance of the fullerene derivatives acted as lubricant additives were investigated at different concentrations in the range of 0-1 wt%.The results indicated that the addition of polyhydroxyl and carboxylic derivatives could improve the lubrication properties,which led to the reduction of wear to about 40% at most.It is attributed that the optimized substitutions of fullerene molecules may be of benefit to their distribution properties and lubricating behaviors in water based lubrication.
LIU YuHongLIU PengXiaoCHE LuSHU ChunYingLU XinChun
In this paper,we report the tribological properties of self-assembled molecular(SAM) films of fluoroalkylsilanes and non-fluoroalkylsilanes,with different chain-lengths,adsorbed on Si substrate surfaces by covalent bonds.The SAM films were characterized using a universal ball-disk experimental tester in aqueous solutions.The substrate surface was examined by X-ray photoelectron spectroscopy(XPS),and the SAM films adsorbed on the Si surfaces were inspected by contact angle measurements and XPS.Lubrication studies revealed that several kinds of fluoroalkylsilanes had similar friction coefficients;the small differences were attributed to the chain flexibility.In contrast,differences in the aqueous lubrication properties of SAM films of non-fluoroalkylsilanes were clearly identified.It is suggested that substitution with fluorine atoms and the surface affinities of fluoroalkylsilanes contributed to redistribution of surface changes,causing variations in lubrication behaviors.
The tribological properties of perfluoro and non-perfluoro alkylsilane molecular films were investigated and compared detailedly. Their surface properties were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle (CA) measurement. A ball-on-disk tribometer was used to study the frictional properties of these alkylsilane monolayers. The experimental results reveal that the alkylsilane molecular films are good candidates to decrease friction and they have good capability to endure rigorous shear forces. Perfluoro alkylsilane molecular films are bonded better with the Si substrate than the simple hydrocarbon ones. The effects of sliding velocity and normal load on friction coefficient are evident and the friction coefficient in- creases with the increase of the sliding velocity. However, friction coefficient decreases with the increase of normal load initially and then increases, indicating there exists a critical normal load for the load effect.