Based on the microcosmic mechanics of composite materials, an elastic constitutive model for frozen soil with damage is presented. For frozen sandy soil with a range of ice contents and under a range of temperature conditions, quantitative results determined by this constitutive model agree with practically measured stress-strain curves. After numerically simulating the coupled water, temperature and stress fields of channel frozen and frozen roadbed using a self-developed finite-element routine, more accurate and practical calculation results for the temperature field coupled with stress, displacement and strain fields are obtained; the results match predictions and tests undertaken by earlier researchers. Our results support the reliability of our routine for calculating interdependent physical quantities of frozen soil and for describing the relationships between them. Our program can offer necessary constraints for engineering design and construction in permafrost regions.
ZHU ZhiWu, NING JianGuo& MA Wei 1 School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China
A hybrid VOF and PIC multi-material interface treatment method for Eulerian method is presented in this study in order to solve the problem that the Eulerian method is not robust enough to treat the dynamic fracture of material. This treatment method is used in the important computational region such as the material interface,large deformation region and fracture region where more particles are added for calculation,while the continuous transport method is used in the other regions. Through this method,a series of penetration problems such as blunt projectile penetration into the steel target and steel projectile penetration into concert target are numerically simulated. The comparison of the numerical result and experimental result shows that the hybrid algorithm can effectively track the deformation in the process of penetration and also insure precision and efficiency.
MA TianBao,WANG Jing & NING JianGuo State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China
Level Set interface treatment method is introduced into Euler method,which is employed for interface treatment method for multi-materials. Combined with the ghost fluid method,the moving interface is tracked. Fifth-order WENO spatial discretization and third-order TVD Runge-Kutta time discretization methods are used. Shock-wave action on bubble,implosion and velocity field Shock effect bubbles; implosion and velocity field are simulated by means of LS-MMIC3D programmed by C++. Nu-merical results show that the Level Set interface treatment method is effective and feasible for multi-material interface treatment in comparison with the WENO method.
WU KaiTeng1,2,HAO Li3,WANG Cheng4 & ZHANG Li1,2 1 Numerical Simulation Sichuan Higher School Key Laboratory,Neijiang Normal University,Neijiang 641112,China
Plate impact expeiments are conducted to investigate the dynamic behavior of alumina by using one stage light gas gun. A ve-locity interferometer system for reflectors (VISAR) is used to obtain Hugoniot elastic limit and the free surface velocity profile,which consists of an elastic wave followed immediately by a dispersive inelastic wave. The stress histories under different impact velocities are measured by in-material manganin gauges. Based on the experimental data a Hugoniot curve is fitted,which shows the compressive characteristics that alumina changes typically from elastic to "plastic" ,and under higher pressure it will be transferred to similar-fluid state. The turning point of the Hugoniot curve from a high pressure region to a low pressure region is about 11.4 GPa. The fracture process of alumina is simulated by way of finite element code. After the analysis of the fracture mechanism,the numerical results show an important role played by the nucleation and the growth of the cracks in the macro-scopic fracture of the alumina target. The numerical predictions of stress histories are compared with the experimental results,which indicates consistency between them.
REN HuiLan1,SHU XueFeng2 & LI Ping3 1 State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China