讨论了计算In Ga As Sb四元合金材料禁带宽度常用的Glisson方法和Moon方法,比较了它们的计算结果.将两者化成相同形式下的等价公式后发现,二者都只考虑了Γ点带隙弯曲因子对禁带宽度的影响.通过考虑自旋轨道分裂带对价带的影响,提出一种将自旋轨道分裂带弯曲因子引入计算In Ga As Sb禁带宽度的新方法.研究结果表明,该方法计算结果的准确性要优于两种常见的方法.
碳量子点(CQDs,C-dots or CDs)是一种新型的碳纳米材料,尺寸在10nm以下,具有良好的水溶性、化学惰性、低毒性、易于功能化和抗光漂白性、光稳定性等优异性能,是碳纳米家族中的一颗闪亮的明星。自从2006年[1]报道了碳量子点(CQDs)明亮多彩的发光现象后,世界各地的研究小组开始对CQDs进行了深入的研究。最近几年的研究报道了各种方法制备的CQDs在生物医学、光催化、光电子、传感等领域中都有重要的应用价值。这篇综述主要总结了关于CQDs的最近的发展,介绍了CQDs的合成方法、表面修饰、掺杂、发光机理、光电性质以及在生物医学、光催化、光电子、传感等领域的应用。
Copper-doped ZnS (ZnS:Cu) nanocrystals are synthesized by the sol-gel method. The average size of the ZnS:Cu nanocrystals is 3.1 nm. The x-ray diffraction indicates that increasing the Cu-dopant concentration results in a large shift in the diffraction angle. The effects of the dopant concentration, the reactant ratio, and aging temperature on the optical properties of the ZnS:Cu nanocrystals are also investigated. The fluorescence emission mechanism is analyzed by peak deconvolution using Gaussian functions. We find that the emission of the ZnS:Cu nanocrystal is composed of different luminescence centers at 430, 470, 490, 526, and 560 nm. The origins of these emissions are discussed and demonstrated by controlled experiments.