An all-fiber dumbbell-shaped dual-amplifier mode-locked Er-doped laser that can function in dissipative soliton resonance(DSR)regime is demonstrated.A nonlinear optical loop mirror(NOLM)and a nonlinear amplifying loop mirror(NALM)are employed to initiate the mode-locking pulses.Unlike conventional single-amplifier structure,the output peak power of which remains unchanged when pump power is varied,the proposed structure allows its output peak power to be tuned by changing the pump power of the two amplifiers while the pulse duration is directly determined by the amplifier of nonlinear amplifying loop mirror.The entire distribution maps of peak power and pulse duration clearly demonstrate that the two amplifiers are related to each other,and they supply directly a guideline for designing tunable peak power DSR fiber laser.Pulse width can change from 800 ps to 2.6 ns and peak power varies from 13 W to 27 W.To the best of our knowledge,the peak power tunable DSR pulse is observed for the first time in dumbbell-shaped Er-doped all-fiber mode-locked lasers.
Generation of noise-like rectangular pulse was investigated systematically in an Er–Yb co-doped fiber laser based on an intra-cavity coupler with different coupling ratios.When the coupling ratio was 5/95,stable mode-locked pulses could be obtained with the pulse packet duration tunable from 4.86 ns to 80 ns.The repetition frequency was 1.186 MHz with the output spectrum centered at 1.6μm.The average output power and single pulse energy reached a record 1.43 W and1.21μJ,respectively.Pulse characteristics under different coupling ratios(5/95,10/90,20/80,30/70,40/60)were also presented and discussed.
We report an all-fiberized 30-W supercontinuum(SC) generation in a piece of ZrF4-BaF2-LaF3-AlF3-NaF(ZBLAN) fiber. The pump source is a thulium-doped fiber amplifier(TDFA) with broadband output spectrum spanning the 1.9 to 2.6 μm region. The used ZBLAN fiber has a core diameter of 10 μm, and was directly fusion-spliced to the pigtail of the TDFA without using a traditional mode field adapter(MFA) or a piece of transition fiber. Such a low-loss and robust fusion splice joint, together with a robust AlF3-fiber-based endcap,enables efficient and high-power SC generation in the ZBLAN fiber. An SC with an average power up to 30.0 W and a spectral coverage of 1.9–3.35 μm with 20-dB bandwidth of 1.92–3.20 μm was obtained. Moreover, an SC with a broader spectrum was achieved by raising the pump pulse peak power(via reducing the duty ratio of the pump laser pulse). An SC with an output power of 27.4 W and a spectral coverage of 1.9–3.63 μm(with 20-dB bandwidth of 1.92–3.47 μm) was obtained, as well as an SC with output power of 24.8 W and a spectral coverage of 1.9–3.70 μm(with 20-dB bandwidth of 1.93–3.56 μm). The power conversion efficiency was measured as>69%. To the best of the authors’ knowledge, this research demonstrates the record output power of SC lasers based on ZBLAN fibers, paving the way for broadband and efficient multi-tens-of-watts SC generation in softglass fibers.
We report the fabrication of cascaded photonic crystal fiber (PCF) tapers in monolithic design. Flat broadband supercontinuum (SC) generation in cascaded PCF tapers pumped by sub-nanosecond pulses from a 1 064-nm microchip laser is demonstrated. The spectral width (20 dB) extends from 0.47 to 1.67 μm. In the optimal configuration, an ultraflat (3 dB) spectrum from 500 to 1 000 nm is achieved.
Picosecond pulse pumped supercontinuum generation in photonic crystal fiber is investigated by performing a series of comparative experiments. The main purpose is to investigate the supercontinuum generation processes excited by a given pump source through the experimental study of some specific fibers. A 20-W all-fiber picosecond master oscillator-power amplifier (MOPA) laser is used to pump three different kinds of photonic crystal fibers for supercontinuum generation. Three diverse supercontinuum formation processes are observed to correspond to photonie crystal fibers with distinct dis- persion properties. The experimental results are consistent with the relevant theoretical results. Based on the above analyses, a watt-level broadband white light supercontinuum source spanning from 500 nm to beyond 1700 nm is demonstrated by using a picosecond fiber laser in combination with the matched photonic crystal fiber. The limitation of the group velocity matching curve of the photonic crystal fiber is also discussed in the paper.
Theoretical and experimental research on the effect of initial chirp on near-infrared supercontinuum generation by a nanosecond pulse in a nonlinear fiber amplifier is carded out. The complex Ginzburg-Landau equation is used to simulate the propagation of the pulse in the fiber amplifier and the results show that pulses with negative initial chirp produce the widest supercontinuum and pulses with positive initial chirp produce the narrowest supercontinuum when the central wavelength of the pump lies in the normal dispersion region of the gain fiber. A self-made line width narrowing system is utilized to control the initial chirp of the nanosecond pump pulse and a four-stage master oscillator power amplifier configuration is adopted to produce a high power near-infrared suppercontinuum. The experimental results are in good agreement with simulations which can provide some guidance on further optimization of the system in future work.
We demonstrate efficient supercontinuum generation extending into mid-infrared spectral range by pumping a twomode As2S3 fiber in the normal dispersion regime. The As2S3 fiber is fusion spliced to the pigtail of a near-infrared supercontinuum pump source with ultra-low splicing loss of 0.125 dB, which enables a monolithic all-fiber mid-infrared supercontinuum source. By two-mode excitation and mixed-mode cascaded stimulated Raman scattering, a supercontinuum spanning from 1.8 μm to 4.2 μm is obtained. Over 70% of the supercontinuum power is converted to wavelengths beyond2.4 μm. This is the first experimental report with respect to the multimode mid-infrared supercontinuum generation in a step-index two-mode chalcogenide fiber.