The deafness-dystonia syndrome(DDS) is also known as Mohr-Tranebjaerg syndrome (MTS,MIM 304700).It is a rare X...
Cheng Wang1,Yulei Li1,Jun Yu Luo2,Jing Yu Liu(1) 1.College of Life Science and Technology,Huazhong University of Science and Technology,Wuhan,Hubei, 430074,P.R.China 2.Affiliated Secondary School,Huazhong University of Science and Technology,Wuhan,Hubei, 430074,P.R.China
γ -actin (ACTG1) gene is a cytoplasmic nonmuscle actin gene, which encodes a major cytoskeletal protein in the sensory hair cells of the cochlea. Mutations in ACTG1 were found to cause autosomal dominant, progressive, sensorineural hearing loss linked to the DFNA 20/26 locus on chromosome 17q25.3 in European and American families, respectively. In this study, a novel missense mutation (c.364A〉G; p.I122V) co-segregated with the affected individuals in the family and did not exist in the unaffected family members and 150 unrelated normal controls. The alteration of residue Ile122 was predicted to damage its interaction with actin-binding proteins, which may cause disruption of hair cell organization and function. These findings strongly suggested that the I122V mutation in ACTG1 caused autosomal dominant non-syndromic hearing impairment in a Chinese family and expanded the spectrum of ACTG1 mutations causing hearing loss.
Using genomic in situ hybridization with genomic DNA, high-order chromatin fibers were successfully exhibited under a light microscope through the cell cycle in barley, rice, maize and field bean. From the interphase to prophase and metaphase of mitosis, the fibers were basically similar. Each was estimated to be around 200 nm in diameter, but the strength of signals was not the same along the fiber length. Through the cell cycle a series of dynamic distribution changes occurred in the fibers. In the interphase, they were unraveled. At the early prophase they were arranged with parallel and mirror symmetry. During late-prophase and metaphase, the fibers were bundled and became different visible chromosomes. The parallel coiling and mirror symmetry structures were visible clearly until the metaphase. In anaphase they disappeared. During telophase, in peripheral regions of congregated chromosome group, borderlines of the chromosomes disappeared and the fibers were unraveled. This demonstrated that mitotic chromosomes are assembled and organized by parallel and adjacent coiling of the fibers and the fibers should be the highest order structure for DNA coiling.
Jing-Yu LiuChao-Wen SheZhong-Li HuFen LiYing DiaoLi-Hua LiuYun-Chun Song