The novel composite films containing clustered TiO2 particles and fine tourmaline particles on the surface of copper webs were prepared by the sol-gel method. The microstructures of the composite films were investigated by scanning electron microscopy (SEM), and the photocatalytic activity of the films was evaluated by photocatalytic degradation of methyl orange, respectively. The results indicate that tourmaline particles can obviously influence the microstructures of TiO2 films and enhance the photocatalytic activity due to their spontaneous permanent polarity and high radiotechnology of far infrared. During preparing the composite films, the clustered TiO2 particles with lots of nano-sized ladder layers can grow on the surface of fine tourmaline particles, the thickness of ladder layer is 10 nm, and the average diameter of nano-sized TiO2 particles is 15 nm.
The SiO2/TiO2 composite powders including mineral tourmaline powders (T/SiO2/TiO2) were prepared from a sol made by a two-step hydrolysis method, using metasilicate ester as precursor. The powders were characterized by scanning electron microscopy (SEM). The photocatalytic activity of the sample was evaluated by the photocatalytic degradation of methyl orange. The effects of heat-treatment on the photocatalytic activity were discussed. It is found that the T/SiO2/TiO2 composite powders show higher photocatalytic activity when including 10% SiO2 and 4% tourmaline. Moreover, the photocatalytic mechanism of tourmaline on the powders was proposed.