A thermal-mechanical-damage coupled finite elements model was established to investigate temperature changes, edge cracks and rolling force during roiling of magnesium alloy sheet. A cuneal sheet was also adopted to study the influence of reduction on temperature, damage and rolling force. The results show that with increasing the reduction, the rolling force increases, and the temperature of the Mg sheet decreases. Edge cracks occur when the reduction is above 51.6%, with the damage value of above 0.49. The plastic-damage in Mg sheet rolling is a result of hole development, shearing deformation and accumulative plastic strain.
The billets of AM60 alloy, prepared with self-inoculation method, were partially remelted into semisolid state. Effects of process parameters on remelting microstructure of semisolid billet were investigated. Experimental results show that the solid particles obtained with self-inoculation method are in smaller grain size and globular shape after partial remelting, compared with those prepared with other casting methods. In the optimized process conditions, the average size of solid particles of partially remelted billet is 65 μm, and the shape factor is 1.12. The process parameters, i.e. pouting temperature, addition amount of self-inoculants, and the slope angle of multi-stream mixing cooling chalmel have influence on the microstructure of partially remelted billet. The optimized temperature is from 680 ℃ to 700 ℃, addition amount of self-inoculants is between 5% and 7% (mass fraction), slope angle of multi-stream mixing cooling channel is between 30° and 45°, with which the dendritic microstructure of as-cast billet can be avoided, and the size of solid particles ofremelted billet is reduced.