In order to improve the quality of clad ingots, diverse physical fields including electromagnetic stirring, power ultrasonic and compound field of ultrasonic and electromagnetic stirring were attempted to prepare clad ingots of 3003/4004 alloys. The solidification structures near the interface in clad ingots were investigated. The experiment results indicate that the solidification structure of 4004 alloy changes from dendritic crystals to petal-like grains when the clad ingot is treated by electromagnetic stirring. With the effect of power ultrasonic, the solidified microstructure of 4004 alloy exhibits the refinement of both primary a(A1) and eutectic silicon. Under the compound field, the primary a(A1) is refined, the morphology of eutectic silicon has a transition from a coarse plate-like form without treatment or thin acicular-like form with power ultrasonic to fine coral-like form.
The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn.
In order to study the wear behavior of different kinds of contact wires,the dry sliding wear behaviors of Cu-Sn,Cu-Ag and Cu-Mg alloys prepared by up-drawn continuous casting and followed continuous extrusion were studied.The research was tested on a block-on-ring wear tester.The results indicate that the friction coefficient is remarkably influenced by the formation of a continuous tribofilm,which consists of oxidation film.The abrasion,adhesion,oxidation and plastic deformation are observed.Oxidation and abrasion wear mechanisms dominate at the lower sliding velocity and load.The combination of oxidation and adhesion play leading roles with the increasing load and velocity.Plastic deformation is detected under higher applied load and sliding velocities.