随着网络带宽的不断提高,在线识别大流对于拥塞控制、异常检测等网络应用具有重要意义.提出了一种提取大流的算法FEFS(flow extracting with frequency & size),能够通过在线识别和淘汰小流,把大流信息保存在有限的高速存储空间中,从而快速提取大流.该算法利用LRU(least recently used)定位更新频率低的流,并进一步用流尺寸因子s和自适应调节因子M标记其中相对较小的流,最后用新到达的流将其替换.FEFS把LRU策略和尺寸因子s相结合,同时考虑了流的近期更新频率和累积报文数量,因此能够准确在线识别大流.LRU策略和尺寸因子都利用了流大小的重尾分布特征,因此FEFS能以很低的存储代价保存和更新大流信息.模拟实验表明,在限定存储条件下,FEFS的平均相对误差率明显低于经典的multi-stage filter算法,而平均报文处理时间也短于multi-stage filter算法.