Calcium (Ca) plays a crucial role as a second messenger in intracellular signaling elicited by developmental and environmental cues. Calcineurin B-like proteins (CBLs) and their target proteins, CBL-interacting protein kinases (CIPKs) have emerged as a key Ca^2+-mediated signaling network in response to stresses in plants. Bioinformatic analysis was used to identify 43 putative ZmC1PK (Zea mays CIPK) genes in the genome of maize inbred line B73. Based on gene structures, these ZmCIPKs were divided into intron-rich and intron-poor groups. Phylogenetic analysis indicated that the ZmCIPK family had a high evolutionary relationship with the rice CIPK family of 30 members. Microarray data and RT-PCR assay showed that ZrnCIPK genes transcriptionally responded to abiotic stresses, and that 24, 31, 20 and 19 ZmCIPK genes were up-regulated by salt, drought, heat and cold stresses, respectively. There were different expression patterns of ZmCIPKs between cold-tolerant inbred line B73 and cold-sensitive inbred line Mo17 under cold stress. Our findings will aid further molecular dissection of biological functions of the CIPKs in maize, and provide new insight into the CBL--CIPK signaling network in plants.
The homozygous T3 transgenic lines with sense OsCBL8 gene and antisense OsCBL8 gene obtained by agro-transformation were used to investigate the function of OsCBL8 in rice. Semi-quantitative RT-PCR showed that the expression of OsCBL8 extremely increased in sense transgenic lines, and decreased to some extents in antisense transgenic lines. Such up- and down-regulation of the OsCBL8 gene in these transgenic lines had little effects on main agronomic traits, but significantly decreased the number of filled grains per panicle and seed setting rate in some of transgenic lines. By evaluation of the tolerance to 150 mmol/L NaCl, 20% PEG6000 and low temperature treatments, and relevant physiological indices, 8F12, a sense transgenic line with high salt tolerance, and 8R14, an antisense transgenic line with high drought tolerance, were obtained, which suggests that the OsCBL8 gene is involved in the response of rice to abiotic stresses.
MA Bo-junGu Zhi-minTANG Hai-juanCHEN Xi-fengLIU FengZHANG Hong-sheng