This paper presents a data fusion algorithm for dynamic system with multi-sensor and uncertain system models. The algorithm is mainly based on Kalman filter and interacting multiple model(IMM). It processes crosscorrelated sensor noises by using augmented fusion before model interacting. And eigenvalue decomposition is utilized to reduce calculation complexity and implement parallel computing. In simulation part, the feasibility of the algorithm was tested and verified, and the relationship between sensor number and the estimation precision was studied. Results show that simply increasing the number of sensor cannot always improve the performance of the estimation. Type and number of sensors should be optimized in practical applications.
Unit commitment(UC), as a typical optimization problem in electric power system, faces new challenges as energy saving and emission reduction get more and more important in the way to a more environmentally friendly society. To meet these challenges, we propose a UC model considering energy saving and emission reduction. By using real-number coding method, swap-window and hill-climbing operators, we present an improved real-coded genetic algorithm(IRGA) for UC. Compared with other algorithms approach to the proposed UC problem, the IRGA solution shows an improvement in effectiveness and computational time.